(2010•本溪)已知坐标平面上的机器人接受指令“[a,A]”(a≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A后,再向面对方向沿直线行走a.若机器人的位置在原点,面对方向为y轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( ) A.(-1,- ![]() B.(-1, ![]() C.( ![]() D.(- ![]() |
|
(2010•本溪)如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中∠AOB为120°,OC长为8cm,CA长为12cm,则阴影部分的面积为( )![]() A.64πcm2 B.112πcm2 C.144πcm2 D.152πcm2 |
|
(2010•本溪)如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,AB=4![]() ![]() A. ![]() ![]() B.3 ![]() C.5 ![]() D.7 |
|
(2010•本溪)为执行“两免一补”政策,丹东地区2007年投入教育经费2 500万元,预计2009年投入3 600万元,则这两年投入教育经费的平均增长率为( ) A.10% B.20% C.30% D.15% |
|
(2010•本溪)某展览厅内要用相同的正方体木块搭成一个三视图如下的展台,则此展台共需这样的正方体( )![]() A.3块 B.4块 C.5块 D.6块 |
|
![]() A.a>1 B.a<1 C.a>0 D.a<0 |
|
(2010•本溪)从今年6月1日起,在我国各大超市,市场实行塑料购物袋有偿使用制度,这一措施有利于控制白色污染.已知一个塑料袋丢弃在地上的面积为500cm2,如果100万名游客每人丢弃一个塑料袋,那么会污染的最大面积用科学记数法表示是( ) A.5×104m2 B.5×106m2 C.5×103m2 D.5×10-2m2 |
|
(2010•本溪)如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=3. (1)在AB边上取一点D,将纸片沿OD翻折,使点A落在BC边上的点E处,求点D,E的坐标; (2)若过点D,E的抛物线与x轴相交于点F(-5,0),求抛物线的解析式和对称轴方程; (3)若(2)中的抛物线与y轴交于点H,在抛物线上是否存在点P,使△PFH的内心在坐标轴上?若存在,求出点P的坐标,若不存在,请说明理由. (4)若(2)中的抛物线与y轴相交于点H,点Q在线段OD上移动,作直线HQ,当点Q移动到什么位置时,O,D两点到直线HQ的距离之和最大?请直接写出此时点Q的坐标及直线HQ的解析式. ![]() |
|
(2010•本溪)如图①,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形. (1)试找出图1中的一个损矩形; (2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上; (3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由; (4)在图②中,过点M作MG⊥y轴于点G,连接DN,若四边形DMGN为损矩形,求D点坐标. ![]() |
|
(2010•本溪)如图a,∠EBF=90°,请按下列要求准确画图: 1:在射线BE、BF上分别取点A、C,使BC<AB<2BC,连接AC得直角△ABC; 2:在AB边上取一点M,使AM=BC,在射线CB边上取一点N,使CN=BM,直线AN、CM相交于点P. (1)请用量角器度量∠APM的度数为______;(精确到1°) (2)请用说理的方法求出∠APM的度数; (3)若将①中的条件“BC<AB<2BC”改为“AB>2BC”,其他条件不变,你能自己在图b中画出图形,求出∠APM的度数吗? ![]() |
|