(2005•西宁)“手心,手背”是同学们中间广为流传的游戏.游戏时,甲、乙、丙三方每次做“手心”“手背”两种手势中的一种.规定:(1)出现三个相同手势不分胜负须继续比赛; (2)出现一个“手背”和两个“手心”或出现一个“手心”和两个“手背”时,则一种手势者为胜,两种相同手势者为负. 假定甲、乙、丙三人每次都有相同可能地做这两种手势,那么甲、乙、丙三位同学胜的概率是否一样?这个游戏对三方是否公平?若公平,请说明理由;若不公平,如何修改规则才能使游戏对三方都公平? |
|
(2007•呼伦贝尔)有两个可以自由转动的均匀转盘A、B,分别被分成4等份、3等份,并在每份内均标有数字,如图所示,丁洋和王倩同学用这两个转盘做游戏,游戏规则如下:①分别转动转盘A和B;②两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止);③如果和为0,丁洋获胜,否则,王倩获胜. (1)用列表法(或树状图)求丁洋获胜的概率; (2)你认为这个游戏对双方公平吗?请说明理由. ![]() |
|
(2005•安徽)两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序.两人采用了不同的乘车方案: 甲无论如何总是上开来的第一辆车.而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况.如果第二辆车的状况比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第三辆车. 如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解决下面的问题: (1)三辆车按出现的先后顺序共有哪几种不同的可能? (2)你认为甲、乙两人采用的方案,哪一种方案使自己乘坐上等车的可能性大,为什么? |
|
(2005•长春)袋中有一个红球和两个白球,它们除了颜色外都相同,任意摸出一个球,记下球的颜色,放回袋中,搅匀后再任意摸出一个球,记下球的颜色.为了研究两次摸球出现某种情况的概率,画出如下树状图. (1)请把树状图填写完整. (2)根据树状图可知摸到一红一白两球的概率是______. ![]() |
|
(2005•贵阳)现有一项资助贫困生的公益活动由你来主持,每位参与者需交赞助费5元,活动规则如下:如图是两个可以自由转动的转盘,每个转盘被分成6个相等的扇形,参与者转动这两个转盘,转盘停止后,指针各自指向一个数字,(若指针在分格线上,则重转一次,直到指针指向某一数字为止),若指针最后所指的数字之和为12,则获得一等奖,奖金20元;数字之和为9,则获得二等奖,奖金10元;数字之和为7,则获得三等奖,奖金为5元;其余均不得奖;此次活动所集到的赞助费除支付获奖人员的奖金外,其余全部用于资助贫困生的学习和生活; (1)分别求出此次活动中获得一等奖、二等奖、三等奖的概率; (2)若此次活动有2000人参加,活动结束后至少有多少赞助费用于资助贫困生? ![]() |
|
(2005•河北)请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘: (1)用树状图表示出所有可能的寻宝情况; (2)求在寻宝游戏中胜出的概率. ![]() |
|
(2005•河南)如图是从一副扑克牌中取出的两组牌,分别是黑桃1,2,3,4和方块1,2,3,4.将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是______.![]() |
|
![]() (1)列举(用列表或画树状图)所有可能得到的数字之积; (2)求出数字之积为奇数的概率. |
|
(2005•锦州)据《重庆晨报》,2007年,重庆市市被国家评为无偿献血先进城市,医疗临床用血实现了100%来自市民自愿献血,无偿献血总量6.5吨,居全国第三位. 现有小莉,小罗,小强三个自愿献血者,两人血型为O型,一人血型为A型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所抽血的血型均为O型的概率.(要求:用列表或画树状图的方法解答) |
|
(2005•聊城)将分别标有数字1,1,2,3的四张卡片洗匀后,背面朝上放在桌面上 (1)任意抽取一张卡片,求抽到卡片上的数字是奇数的概率; (2)任意抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,请你列表或画树状图分析并求出组成的两位数中恰好是13的概率. |
|