登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
对于定义域为D的函数y=f(x),若同时满足下列条件: ①f(x)在D内单调递增...
对于定义域为D的函数y=f(x),若同时满足下列条件:
①f(x)在D内单调递增或单调递减;
②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x∈D)叫闭函数.
(1)求闭函数y=-x
3
符合条件②的区间[a,b];
(2)判断函数
是否为闭函数?并说明理由;
(3)若
是闭函数,求实数k的取值范围.
(1)根据单调性依据闭区间的定义等价转化为方程,直接求解. (2)判断其在(0,+∞)是否有单调性,再据闭函数的定义判断; (3)根据闭函数的定义一定存在区间[a,b],由定义直接转化求解即可. 【解析】 (1)由题意,y=-x3在[a,b]上递减, 则解得(4分) 所以,所求的区间为[-1,1];(5分) (2)取x1=1,x2=10,则, 即f(x)不是(0,+∞)上的减函数. 取, , 即f(x)不是(0,+∞)上的增函数 所以,函数在定义域内不单调递增或单调递减, 从而该函数不是闭函数;(9分) (3)若是闭函数,则存在区间[a,b], 在区间[a,b]上,函数f(x)的值域为[a,b], 即,∴a,b为方程的两个实数根, 即方程x2-(2k+1)x+k2-2=0(x≥-2,x≥k)有两个不等的实根(11分) 当k≤-2时,有,解得,(13分) 当k>-2时,有,无解,(15分) 综上所述,.
复制答案
考点分析:
相关试题推荐
某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x(x∈N
*
)名员工从事第三产业,调整后他们平均每人每年创造利润为
万元(a>0),剩下的员工平均每人每年创造的利润可以提高0.2x%.
(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?
(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则a的取值范围是多少?
查看答案
设{a
n
}是公比大于1的等比数列,S
n
为数列{a
n
}的前n项和.已知S
3
=7,且a
1
+3,3a
2
,a
3
+4构成等差数列.
(1)求数列{a
n
}的通项公式.
(2)令b
n
=lna
3n+1
,n=1,2,…,求数列{b
n
}的前n项和T
n
.
查看答案
记关于x的不等式
的解集为P,不等式|x-1|≤1的解集为Q.
(1)若a=3,求P;
(2)若a>-1且Q⊆P,求a的取值范围.
查看答案
已知
,函数
(1)求函数f(x)的最小正周期;
(2)当
时,求函数f(x)的值域.
查看答案
若函数f(x)=|2x+1|-|x-4|,则不等式f(x)>2的解为
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.