满分5 > 高中数学试题 >

已知向量=(cosωx-sinωx,sinωx),=(-cosωx-sinωx,...

已知向量manfen5.com 满分网=(cosωx-sinωx,sinωx),manfen5.com 满分网=(-cosωx-sinωx,2manfen5.com 满分网cosωx),设函数f(x)=manfen5.com 满分网manfen5.com 满分网+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(manfen5.com 满分网,1)
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点(manfen5.com 满分网,0)求函数f(x)在区间[0,manfen5.com 满分网]上的取值范围.
(1)先利用向量数量积运算性质,求函数f(x)的解析式,再利用二倍角公式和两角差的余弦公式将函数f(x)化为y=Asin(ωx+φ)+k型函数,最后利用函数的对称性和ω的范围,计算ω的值,从而得函数的最小正周期; (2)先将已知点的坐标代入函数解析式,求得λ的值,再求内层函数的值域,最后将内层函数看做整体,利用正弦函数的图象和性质即可求得函数f(x)的值域. 【解析】 (1)∵f(x)=•+λ=(cosωx-sinωx)×(-cosωx-sinωx)+sinωx×2cosωx+λ =-(cos2ωx-sin2ωx)+sin2ωx+λ =sin2ωx-cos2ωx+λ=2sin(2ωx-)+λ ∵图象关于直线x=π对称,∴2πω-=+kπ,k∈z ∴ω=+,又ω∈(,1) ∴k=1时,ω= ∴函数f(x)的最小正周期为= (2)∵f()=0 ∴2sin(2××-)+λ=0 ∴λ=- ∴f(x)=2sin(x-)- 由x∈[0,] ∴x-∈[-,] ∴sin(x-)∈[-,1] ∴2sin(x-)-=f(x)∈[-1-,2-] 故函数f(x)在区间[0,]上的取值范围为[-1-,2-]
复制答案
考点分析:
相关试题推荐
(选修4-4:坐标系与参数方程):
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=manfen5.com 满分网与曲线manfen5.com 满分网(t为参数)相较于A,B来两点,则线段AB的中点的直角坐标为    查看答案
(选修4-1:几何证明选讲)
如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交⊙O于点C,则CD的最大值为   
manfen5.com 满分网 查看答案
如图,双曲线manfen5.com 满分网-manfen5.com 满分网=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:
(Ⅰ)双曲线的离心率e=   
(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值manfen5.com 满分网=   
manfen5.com 满分网 查看答案
回文数是指从左到右与从右到左读都一样的正整数.如22,,11,3443,94249等.显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则:
(Ⅰ)4位回文数有    个;
(Ⅱ)2n+1(n∈N+)位回文数有    个. 查看答案
阅读如图所示的程序框图,运行相应的程序,输出的结果s=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.