满分5 > 高中数学试题 >

已知函数,且在上的最大值为, (1)求函数f(x)的解析式; (2)判断函数f(...

已知函数manfen5.com 满分网,且在manfen5.com 满分网上的最大值为manfen5.com 满分网
(1)求函数f(x)的解析式;
(2)判断函数f(x)在(0,π)内的零点个数,并加以证明.
(I)由题意,可借助导数研究函数,在上的单调性,确定出最值,令最值等于,即可得到关于a的方程,由于a的符号对函数的最值有影响,故可以对a的取值范围进行讨论,分类求解; (II)借助导数研究函数f(x)在(0,π)内单调性,由零点判定定理即可得出零点的个数. 【解析】 (I)由已知得f′(x)=a(sinx+xcosx),对于任意的x∈(0,),有sinx+xcosx>0,当a=0时,f(x)=-,不合题意; 当a<0时,x∈(0,),f′(x)<0,从而f(x)在(0,)单调递减, 又函数在上图象是连续不断的,故函数在上上的最大值为f(0)=-,不合题意; 当a>0时,x∈(0,),f′(x)>0,从而f(x)在(0,)单调递增, 又函数在上图象是连续不断的,故函数在上上的最大值为f()==,解得a=1, 综上所述,得 (II)函数f(x)在(0,π)内有且仅有两个零点.证明如下: 由(I)知,,从而有f(0)=-<0,f()=>0, 又函数在上图象是连续不断的,所以函数f(x)在(0,)内至少存在一个零点, 又由(I)知f(x)在(0,)单调递增,故函数f(x)在(0,)内仅有一个零点. 当x∈[,π]时,令g(x)=f′(x)=sinx+xcosx,由g()=1>0,g(π)=-π<0,且g(x)在[,π]上的图象是连续不断的,故存在m∈(,π),使得g(m)=0. 由g′(x)=2cosx-xsinx,知x∈(,π)时,有g′(x)<0,从而g(x)在[,π]上单调递减. 当x∈(,m),g(x)>g(m)=0,即f′(x)>0,从而f(x)在(,m)内单调递增 故当x∈(,m)时,f(x)>f()=>0,从而(x)在(,m)内无零点; 当x∈(m,π)时,有g(x)<g(m)=0,即f′(x)<0,从而f(x)在(,m)内单调递减. 又f(m)>0,f(π)<0且f(x)在[m,π]上的图象是连续不断的,从而f(x)在[m,π]内有且仅有一个零点. 综上所述,函数f(x)在(0,π)内有且仅有两个零点.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,等边三角形OAB的边长为manfen5.com 满分网,且其三个顶点均在抛物线E:x2=2py(p>0)上.
(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q.证明以PQ为直径的圆恒过y轴上某定点.
查看答案
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos48°
(5)sin2(-25°)+cos255°-sin2(-25°)cos55°
(Ⅰ)试从上述五个式子中选择一个,求出这个常数
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.
查看答案
manfen5.com 满分网如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点.
(1)求三棱锥A-MCC1的体积;
(2)当A1M+MC取得最小值时,求证:B1M⊥平面MAC.
查看答案
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元)88.28.48.68.89
销量y(件)90848.3807568
(I)求回归直线方程manfen5.com 满分网=bx+a,其中b=-20,a=manfen5.com 满分网-bmanfen5.com 满分网
(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
查看答案
在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.
(Ⅰ)求an和bn
(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.