满分5 > 高中数学试题 >

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数. (1)sin2...

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos48°
(5)sin2(-25°)+cos255°-sin2(-25°)cos55°
(Ⅰ)试从上述五个式子中选择一个,求出这个常数
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.
(Ⅰ)选择(2),由sin215°+cos215°-sin15°cos15°=1-sin30°=,可得这个常数的值. (Ⅱ)推广,得到三角恒等式sin2α+cos2(30°-α)-sinαcos(30°-α)=.证明方法一:直接利用两角差的余弦公式代入等式的左边,化简可得结果. 证明方法二:利用半角公式及两角差的余弦公式把要求的式子化为 +-sinα(cos30°cosα+sin30°sinα),即 1-+cos2α+sin2α -sin2α-,化简可得结果. 【解析】 选择(2),计算如下: sin215°+cos215°-sin15°cos15°=1-sin30°=,故 这个常数为. (Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广,得到三角恒等式sin2α+cos2(30°-α)-sinαcos(30°-α)=. 证明:(方法一)sin2α+cos2(30°-α)-sinαcos(30°-α)=sin2α+-sinα(cos30°cosα+sin30°sinα) =sin2α+cos2α+sin2α+sinαcosα-sinαcosα-sin2α=sin2α+cos2α=. (方法二)sin2α+cos2(30°-α)-sinαcos(30°-α)=+-sinα(cos30°cosα+sin30°sinα) =1-+(cos60°cos2α+sin60°sin2α)-sin2α-sin2α =1-+cos2α+sin2α-sin2α-=1--+=.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点.
(1)求三棱锥A-MCC1的体积;
(2)当A1M+MC取得最小值时,求证:B1M⊥平面MAC.
查看答案
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元)88.28.48.68.89
销量y(件)90848.3807568
(I)求回归直线方程manfen5.com 满分网=bx+a,其中b=-20,a=manfen5.com 满分网-bmanfen5.com 满分网
(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
查看答案
在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.
(Ⅰ)求an和bn
(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.
查看答案
某地图规划道路建设,考虑道路铺设方案,方案设计图中,点A,B,C表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小.例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.
manfen5.com 满分网
现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为    查看答案
已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.