满分5 > 高中数学试题 >

已知数列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N). (1...

已知数列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N).
(1)写出a2、a3的值(只写结果)并求出数列{an}的通项公式;
(2)设manfen5.com 满分网,若对任意的正整数n,当m∈[-1,1]时,不等式manfen5.com 满分网恒成立,求实数t的取值范围.
(1)由题设知a2=6,a3=12,an-an-1=2n,an-1-an-2=2(n-1),…,a3-a2=2×3,a2-a1=2×2,所以an-a1=2[n+(n-1)+…+3+2],由此可知数列{an}的通项公式为an=n(n+1). (2)由题设条件可推出=,令,则,当x≥1时,f'(x)>0恒成立,f(x)在x∈[1,+∞)上是增函数,故f(x)min=f(1)=3,, 要使对任意的正整数n,当m∈[-1,1]时,不等式恒成立,则须使,即t2-2mt>0,对∀m∈[-1,1]恒成立,由此可知实数t的取值范围. 【解析】 (1)∵a1=2,an-an-1-2n=0(n≥2,n∈N)∴a2=6,a3=12(2分) 当n≥2时,an-an-1=2n,an-1-an-2=2(n-1),…,a3-a2=2×3,a2-a1=2×2, ∴an-a1=2[n+(n-1)+…+3+2], ∴(5分) 当n=1时,a1=1×(1+1)=2也满足上式, ∴数列{an}的通项公式为an=n(n+1)(6分) (2)==(8分) 令,则,当x≥1时,f'(x)>0恒成立 ∴f(x)在x∈[1,+∞)上是增函数,故当x=1时,f(x)min=f(1)=3 即当n=1时,(11分) 要使对任意的正整数n,当m∈[-1,1]时,不等式恒成立, 则须使, 即t2-2mt>0, 对∀m∈[-1,1]恒成立, ∴, ∴实数t的取值范围为(-∞,-2)∪(2,+∞)(14分)
复制答案
考点分析:
相关试题推荐
如图所示,已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角BD折起,得到三棱锥A-BCD.
(1)求证:平面AOC⊥平面BCD;
(2)若三棱锥A-BCD的体积为manfen5.com 满分网,求AC的长.
manfen5.com 满分网
查看答案
某电视台的一个智力游戏节目中,有一道将中国四大名著《三国演义》、《水浒传》、《西游记》、《红楼梦》与它们的作者连线的题目,每本名著只能与一名作者连线,每名作者也只能与一本名著连线,每连对一个得3分,连错得-1分,某观众愿意连线.
(1)求该观众得分0分的概率;
(2)求该观众得正分的概率.
查看答案
已知在△ABC中,角A、B、C所对的边分别为a,b,c,且manfen5.com 满分网
(1)求角B的大小;
(2)设向量manfen5.com 满分网取最大值时,tanC的值.
查看答案
已知动点p(x,y)在椭圆manfen5.com 满分网manfen5.com 满分网=1上,若A点坐标为(3,0)manfen5.com 满分网=1且manfen5.com 满分网manfen5.com 满分网=0,则|manfen5.com 满分网|的最小值是     查看答案
manfen5.com 满分网函数manfen5.com 满分网的部分图象如图所示,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.