满分5 > 高中数学试题 >

设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐...

设椭圆C1manfen5.com 满分网的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:y=x2-1与y轴的交点为B,且经过F1,F2点.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设M(0,manfen5.com 满分网),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求△MPQ面积的最大值.

manfen5.com 满分网
(Ⅰ)抛物线C2:y=x2-1与y轴的交点为B,且经过F1,F2点.求出B,F1,F2点的坐标,即可求出椭圆的半长轴与半焦距,再求出a写出椭圆方程. (Ⅱ)设N(t,t2-1),表示出过点N的抛物线的切线方程,与椭圆的方程联立,利用弦长公式表示出线段PQ的长度,再求出点M到直线PQ的距离为d,表示出△MPQ面积,由于其是参数t的函数,利用函数的知识求出其最值即可得到,△MPQ的面积的最大值 【解析】 (Ⅰ)由题意可知B(0,-1),则A(0,-2),故b=2. 令y=0得x2-1=0即x=±1,则F1(-1,0),F2(1,0),故c=1. 所以a2=b2+c2=5.于是椭圆C1的方程为:.(3分) (Ⅱ)设N(t,t2-1),由于y'=2x知直线PQ的方程为:y-(t2-1)=2t(x-t).即y=2tx-t2-1.(4分) 代入椭圆方程整理得:4(1+5t2)x2-20t(t2+1)x+5(t2+1)2-20=0,△=400t2(t2+1)2-80(1+5t2)[(t2+1)2-4]=80(-t4+18t2+3),,, 故=.(7分) 设点M到直线PQ的距离为d,则.(9分) 所以,△MPQ的面积S====(11分) 当t=±3时取到“=”,经检验此时△>0,满足题意. 综上可知,△MPQ的面积的最大值为.(12分)
复制答案
考点分析:
相关试题推荐
如图,灌溉渠的横截面是等腰梯形,底宽2米,边坡的长为x米、倾角为锐角α.
(1)当manfen5.com 满分网且灌溉渠的横截面面积大于8平方米时,求x的最小正整数值;
(2)当x=2时,试求灌溉渠的横截面面积的最大值.

manfen5.com 满分网 查看答案
红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.
(Ⅰ)求红队至少两名队员获胜的概率;
(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ.
查看答案
如图,菱形ABCD中,∠ABC=60°,AE⊥平面ABCD,CF⊥平面ABCD,AB=AE=2,CF=3.
(1)求证:EF⊥平面BDE;
(2)求锐二面角E-BD-F的大小.

manfen5.com 满分网 查看答案
设函数f(x)=Acosωx(A>0,ω>0)的部分图象如图所示,其中△PQR为等腰直角三角形,∠PQR=manfen5.com 满分网,PR=1.求:
(1)函数f(x)的解析式;
(2)函数manfen5.com 满分网在x∈[0,10]时的所有零点之和.

manfen5.com 满分网 查看答案
设A为椭圆manfen5.com 满分网(a>b>0)上一点,点A关于原点的对称点为B,F为椭圆的右焦点,且AF⊥BF,设∠ABF=θ.
(1)|AB|=   
(2)若θ∈[manfen5.com 满分网manfen5.com 满分网],则该椭圆离心率的取值范围为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.