(本小题满分12分)
一个不透明的袋子中装有4个形状相同的小球,分别标有不同的数字2,3,4,,现从袋中随机摸出2个球,并计算摸出的这2个球上的数字之和,记录后将小球放回袋中搅匀,进行重复试验。记A事件为“数字之和为7”.试验数据如下表
摸球总次数 |
10 |
20 |
30 |
60 |
90 |
120 |
180 |
240 |
330 |
450 |
“和为7”出现的频数 |
1 |
9 |
14 |
24 |
26 |
37 |
58 |
82 |
109 |
150 |
“和为7”出现的频率 |
0.10 |
0.45 |
0.47 |
0.40 |
0.29 |
0.31 |
0.32 |
0.34 |
0.33 |
0.33 |
(参考数据:)
(Ⅰ)如果试验继续下去,根据上表数据,出现“数字之和为7”的频率将稳定在它的概率附近。试估计“出现数字之和为7”的概率,并求的值;
(Ⅱ)在(Ⅰ)的条件下,设定一种游戏规则:每次摸2球,若数字和为7,则可获得奖金7元,否则需交5元。某人摸球3次,设其获利金额为随机变量元,求
的数学期望和方差。
已知向量,
,设函数
.
(Ⅰ)求函数的解析式,并求
在区间
上的最小值;
(Ⅱ)在中,
分别是角
的对边,
为锐角,若
,
,
的面积为
,求
.
已知实数x,y满足且不等式axy
恒成立,则实数a的最小值是
.
曲线与直线
所围成的封闭图形的面积为
.
在四面体中,AB,AC,AD两两垂直,AB=
,AD=2,AC=
,则该四面体外接球的表面积为 .
设.
(1)解不等式;
(2)若对任意实数,
恒成立,求实数a的取值范围.