已知函数
,
,
,
,
,
,将它们分别写在六张卡片上,放在一个盒子中,
(Ⅰ)现从盒子中任取两张卡片,将卡片上的函数相加得到一个新函数,求所得的
函数是奇函数的概率;
(Ⅱ)从盒子中任取两张卡片,求其中至少一张上为奇函数的概率
设
、
分别为双曲线
的左、右焦点.若在双曲线右支上存在点
,满足
,且
到直线
的距离等于双曲线的实轴长,则该双曲线的离心率为
已知正四棱柱
中,
=
,
为
中点,则异面直线
与
所形成角的余弦值为
设等差数列
的前
项和为
,则
,
,
,
成等差数列.类比以上结论有:设等比数列
的前
项积为
,则
,
成等比数列.
若曲线
在
处的切线与直线
互相垂直,则实数
设M(
,
)为抛物线C:
上一点,F为抛物线C的焦点,以F为圆心、
为半径的圆和抛物线C的准线相交,则
的取值范围是
A.(0,2) B.[0,2] C.(2,+∞) D.[2,+∞)
