已知点
,则点
关于y轴的对称点的坐标为( )
A、
B、
C、
D、![]()
设集合
,
,那么
等于( )
A、
B、
C、
D、![]()
(本小题满分14分)设
,
.
(1)当
时,求曲线
在
处的切线方程;
(2)如果存在
,使得
成立,求满足上述条件的最大整数
;
(3)如果对任意的
,都有
成立,求实数
的取值范围.
(本小题满分13分)已知几何体A—BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.
(1)求此几何体的体积V的大小;
(2)求异面直线DE与AB所成角的余弦值;
(3)试探究在DE上是否存在点Q,使得AQ
BQ并说明理由.

(本小题满分12分)首届世界低碳经济大会11月17日在南昌召开,本届大会以“节能减排,绿色生态”为主题。某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本
(元)与月处理量
(吨)之间的函数关系可近似的表示为:
,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?
(本小题满分12分)设数列
的前
项和为
,且
;数列
为等差数列,且
,
.
(Ⅰ) 求数列
的通项公式;
(Ⅱ) 若
,
为数列
的前
项和. 求证:
.
