满分5 > 初中数学试题 >

如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1,0)、B(4...

如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1,0)、B(4,0)、C(0,2)三点.

(1)求该二次函数的解析式;

(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;

(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1-S2的最大值.

 

见解析 【解析】 (1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式; (2)当点D在x轴上方时,则可知当CD∥AB时,满足条件,由对称性可求得D点坐标;当点D在x轴下方时,可证得BD∥AC,利用AC的解析式可求得直线BD的解析式,再联立直线BD和抛物线的解析式可求得D点坐标; (3)过点P作PH∥y轴交直线BC于点H,可设出P点坐标,从而可表示出PH的长,可表示出△PEB的面积,进一步可表示出直线AP的解析式,可求得F点的坐标,联立直线BC和PA的解析式,可表示出E点横坐标,从而可表示出△CEF的面积,再利用二次函数的性质可求得S1-S2的最大值. (1)由题意可得,解得, ∴抛物线解析式为y=-; (2)当点D在x轴上方时,过C作CD∥AB交抛物线于点D,如图1, ∵A、B关于对称轴对称,C、D关于对称轴对称, ∴四边形ABDC为等腰梯形, ∴∠CAO=∠DBA,即点D满足条件, ∴D(3,2); 当点D在x轴下方时, ∵∠DBA=∠CAO, ∴BD∥AC, ∵C(0,2), ∴可设直线AC解析式为y=kx+2,把A(-1,0)代入可求得k=2, ∴直线AC解析式为y=2x+2, ∴可设直线BD解析式为y=2x+m,把B(4,0)代入可求得m=-8, ∴直线BD解析式为y=2x-8, 联立直线BD和抛物线解析式可得 ,解得或, ∴D(-5,-18); 综上可知满足条件的点D的坐标为(3,2)或(-5,-18); (3)过点P作PH∥y轴交直线BC于点H,如图2, 设P(t,-t+2), 由B、C两点的坐标可求得直线BC的解析式为y=- , ∴H(t,-), ∴PH=yP-yH=- =-, 设直线AP的解析式为y=px+q, ∴,解得, ∴直线AP的解析式为y=(-t+2)(x+1),令x=0可得y=2-t, ∴F(0,2-t), ∴CF=2-(2-t)=t, 联立直线AP和直线BC解析式可得 ,解得x=,即E点的横坐标为, ∴S1=PH(xB-xE)=(-t2+2t)(5-),S2=••, ∴S1-S2=(-t2+2t)(5-)-••,=-t2+5t=-(t-)2+, ∴当t=时,有S1-S2有最大值,最大值为.
复制答案
考点分析:
相关试题推荐

如图,⊙O与Rt△ABC的直角边AC和斜边AB分别相切于点C、D,与边BC相交于点F,OA与CD相交于点E,连接FE并延长交AC边于点G.

(1)求证:DF∥AO;

(2)若AC=6,AB=10,求CG的长.

 

查看答案

一次函数y=kx+b(k≠0)的图象经过点A(2,-6),且与反比例函数y=-的图象交于点B(a,4)

(1)求一次函数的解析式;

(2)将直线AB向上平移10个单位后得到直线l:y1=k1x+b1(k1≠0),l与反比例函数y2= 的图象相交,求使y1<y2成立的x的取值范围.

 

查看答案

如图,海中一渔船在A处且与小岛C相距70nmile,若该渔船由西向东航行30nmile到达B处,此时测得小岛C位于B的北偏东30°方向上;求该渔船此时与小岛C之间的距离.

 

查看答案

某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.

(1)甲、乙两种书柜每个的价格分别是多少元?

(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.

 

查看答案

某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A、B、C、D、E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:

(1)补全条形统计图;

(2)求这30名职工捐书本数的平均数、众数和中位数;

(3)估计该单位750名职工共捐书多少本?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.