满分5 > 初中数学试题 >

如图①,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的...

如图①,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.

(1)延长MP交CN于点E(如图②).

①求证:△BPM≌△CPE;

②求证:PM=PN;

(2)若直线a绕点A旋转到图③的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;

(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.

 

(1) ①见解析;②见解析;(2)见解析;(3)见解析. 【解析】 (1)①根据平行线的性质证得∠MBP=∠ECP再根据BP=CP,∠BPM=∠CPE即可得到; ②由△BPM≌△CPE,得到PM=PE则PM=ME,而在Rt△MNE中,PN=ME,即可得到PM=PN; (2)证明方法与②相同; (3)四边形MBCN是矩形,只要证明三个角是直角即可; (1)证明:①如图2: ∵BM⊥直线a于点M,CN⊥直线a于点N, ∴∠BMA=∠CNM=90°, ∴BM∥CN, ∴∠MBP=∠ECP, 又∵P为BC边中点, ∴BP=CP, 又∵∠BPM=∠CPE, ∴△BPM≌△CPE, ②∵△BPM≌△CPE, ∴PM=PE. ∴PM=ME, ∴在Rt△MNE中,PN=ME, ∴PM=PN. (2)【解析】 成立,如图3. 证明:延长MP与NC的延长线相交于点E, ∵BM⊥直线a于点M,CN⊥直线a于点N, ∴∠BMN=∠CNM=90°. ∴∠BMN+∠CNM=180°, ∴BM∥CN. ∴∠MBP=∠ECP, 又∵P为BC中点, ∴BP=CP, 又∵∠BPM=∠CPE, 在△BPM和△CPE中, , ∴△BPM≌△CPE, ∴PM=PE, ∴PM=ME, 则Rt△MNE中,PN=ME. ∴PM=PN. (3)【解析】 如图4,四边形BMNC是矩形, 理由:∵MN∥BC,BM⊥AM,CN⊥MN, ∴∠AMB=∠ANC=90°,∠AMB+∠CBM=180°, ∴∠CBM=∠AMB=∠CNA=90°, ∴四边形BMNC是矩形.
复制答案
考点分析:
相关试题推荐

某服装店购进一批秋衣,价格为每件30元.物价部门规定其销售单价不高于每件60元,经市场调查发现:日销售量y(件)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.

(1)求出y与x的函数关系式,并写出自变量x的取值范围;

(2)求该服装店销售这批秋衣日获利W(元)与销售单价x(元)之间的函数关系式;

(3)当销售单价为多少元时,该服装店日获利最大?最大获利是多少元?

 

查看答案

如图,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE=10.求CE的长度.

 

查看答案

某地2015年为做好精准扶贫,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.

(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?

(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.

 

查看答案

如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点BOC=BCAC=OB

1)求证:AB是⊙O的切线;

2)若∠ACD=45°OC=2,求弦CD的长.

 

查看答案

甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球

(1)请画树状图,列举所有可能出现的结果

(2)请直接写出事件取出至少一个红球的概率.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.