如图,已知抛物线y=ax2+bx与x轴分别交于原点O和点F(10,0),与对称轴l交于点E(5,5).矩形ABCD的边AB在x轴正半轴上,且AB=1,边AD,BC与抛物线分别交于点M,N.当矩形ABCD沿x轴正方向平移,点M,N位于对称轴l的同侧时,连接MN,此时,四边形ABNM的面积记为S;点M,N位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM的面积记为S.将点A与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t(0≤t≤5).
(1)求出这条抛物线的表达式;
(2)当t=0时,求S△OBN的值;
(3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0<t≤5)的函数表达式,并求出t为何值时,S有最大值,最大值是多少?
阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.
(1)在图1中证明小胖的发现;
借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:
(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;
(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).
阅读下面材料,并解答下列问题:
在形如ab=N的式子中,我们已经研究过两种情况:
①已知a和b,求N,这是乘方运算;
②已知b和N,求a,这是开方运算.
现在我们研究第三种情况:已知a和N,求b,我们把这种运算叫作对数运算.
定义:如果ab=N(a>0.a≠1,N>0),则b叫作以a为底的N的对数,记作b=logaN.
例如:因为23=8,所以log28=3;因为,所以
.
(1)根据定义计算:
①log381= ; ②log33= ;
③log31= ; ④如果logx16=4,那么x= .
(2)设ax=M,ay=N,则logaN=y(a>0,a≠1,M、N均为正数).用logaM,logaN的代数式分别表示logaMN及,并说明理由.
阅读下面材料:
在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:
尺规作图:过圆外一点作圆的切线.
已知:P为⊙O外一点.
求作:经过点P的⊙O的切线.
小敏的作法如下:如图,
(1)连接OP,作线段OP的垂直平分线MN交OP于点C.
(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点.
(3)作直线PA,PB.
老师认为小敏的作法正确.
请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是 ;由此可证明直线PA,PB都是⊙O的切线,其依据是 .请写出证明过程.
如图,在△ABC中,∠ACB=90°,AC=4,BC=3,D是边AC的中点,CE⊥BD交AB于点E.
(1)求tan∠ACE的值;
(2)求AE:EB.
在“首届中国西部(银川)房•车生活文化节”期间,某汽车经销商推出A、B、C、D四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.
(1)参加展销的D型号轿车有多少辆?
(2)请你将图2的统计图补充完整;
(3)通过计算说明,哪一种型号的轿车销售情况最好?
(4)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.