满分5 > 初中数学试题 >

如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于...

如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1.

(1)求点C的坐标(用含a的代数式表示);

(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;

(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.

 

(1)C(0,﹣3a);(2) y=x2﹣2x﹣3;(3) Q的坐标为(4,0)或(9,0) 【解析】试题(1)由A点坐标和二次函数的对称性可求出B点的坐标为(3,0),根据两点式写出二次函数解析式,再令y=0,求出y的值,即可的点C的坐标; (2)由A(﹣1,0),B(3,0),C(0,﹣3a),求出AB、OC的长,然后根据△ABC的面积为6,列方程求出a的值; (3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,分两种情况求【解析】 当Rt△QGH∽Rt△GFH时,求得m的一个值;当Rt△GFH∽Rt△FCO时,求得m的另一个值. 【解析】 (1)∵抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1, 而抛物线与x轴的一个交点A的坐标为(﹣1,0) ∴抛物线与x轴的另一个交点B的坐标为(3,0) 设抛物线解析式为y=a(x+1)(x﹣3), 即y=ax2﹣2ax﹣3a, 当x=0时,y=﹣3a, ∴C(0,﹣3a); (2)∵A(﹣1,0),B(3,0),C(0,﹣3a), ∴AB=4,OC=3a, ∴S△ACB=AB•OC=6, ∴6a=6,解得a=1, ∴抛物线解析式为y=x2﹣2x﹣3; (3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图, ∵点G与点C,点F与点A关于点Q成中心对称, ∴QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3, ∴OF=2m+1,HF=1, 当∠CGF=90°时, ∵∠QGH+∠FGH=90°,∠QGH+∠GQH=90°, ∴∠GQH=∠HGF, ∴Rt△QGH∽Rt△GFH, ∴=,即=,解得m=9, ∴Q的坐标为(9,0); 当∠CFG=90°时, ∵∠GFH+∠CFO=90°,∠GFH+∠FGH=90°, ∴∠CFO=∠FGH, ∴Rt△GFH∽Rt△FCO, ∴=,即=,解得m=4, ∴Q的坐标为(4,0); ∠GCF=90°不存在, 综上所述,点Q的坐标为(4,0)或(9,0).
复制答案
考点分析:
相关试题推荐

如图,长方形ABCD中,PAD上一动点,连接BP,过点ABP的垂线,垂足为F,交BD于点E,交CD于点G.

(1)当AB=AD,且PAD的中点时,求证:AG=BP;

(2)在(1)的条件下,求的值;

(3)类比探究:若AB=3AD,AD=2AP,的值为  .(直接填答案)

 

查看答案

在一条公路上顺次有A、B、C三地,甲、乙两车同时从A地出发,分别匀速前往B地、C地,甲车到达B地停留一段时间后原速原路返回,乙车到达C地后立即原速原路返回,乙车比甲车早1小时返回A地,甲、乙两车各自行驶的路程y(千米)与时间x(时)(从两车出发时开始计时)之间的函数图象如图所示.

(1)甲车到达B地停留的时长为    小时.

(2)求甲车返回A地途中yx之间的函数关系式.

(3)直接写出两车在途中相遇时x的值.

 

查看答案

海岛A的周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在点B处测得海岛A位于北偏东67°,航行12海里到达C点,又测得海岛A在北偏东45°方向上,如果渔船不改变航线继续向东航行,那么它有没有触礁的危险?请说明理由.【参考数据:sin67°≈;cos67°≈;tan67°≈

 

查看答案

某中学为了解学生到校交通方式情况,随机抽取各年级部分学生就“上下学交通方式”进行问卷调查,调查分为“A:骑自行车;B:步行;C:坐公交车;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图①)和部分扇形统计图(如图②),请根据图中的信息,解答下列问题.

(1)本次调查共抽取         名学生;

(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;

(3)若该中学共有学生3000人,估计有多少学生在上下学交通方式中选择坐公交车?

 

查看答案

如图所示,点B、F、C、E在同一直线上,AB⊥BE,DE⊥BE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.