满分5 > 初中数学试题 >

﹣6的相反数是( ) A. ﹣6 B. ﹣ C. 6 D.

﹣6的相反数是(  )

A. ﹣6    B.     C. 6    D.

 

C 【解析】 −6的相反数是:6, 故选:D.  
复制答案
考点分析:
相关试题推荐

如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.

(1)求抛物线的函数表达式.

(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?

(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.

 

查看答案

如图,已知直线y=﹣2x+4x轴、y轴分别交于点AC,以OAOC为边在第一象限内作长方形OABC

(1)求点AC的坐标;

(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图);

(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

 

查看答案

如图,在⊙O中,C,D分别为半径OB,弦AB的中点,连接CD并延长,交过点A的切线于点E.

(1)求证:AECE.

(2)若AE=,sinADE=,求⊙O半径的长.

 

查看答案

如图,已知点A(1,a)是反比例函数y1=的图象上一点,直线y2=﹣与反比例函数y1=的图象的交点为点BD,且B(3,﹣1),求:

Ⅰ)求反比例函数的解析式;

Ⅱ)求点D坐标,并直接写出y1y2x的取值范围;

Ⅲ)动点Px,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.

 

查看答案

2013年某企业按餐厨垃圾处理费25/吨,建筑垃圾处理费16/吨标准,共支付餐厨和建筑垃圾处理费5200元,从2014年元月起,收费标准上调为:餐厨垃圾处理费100/吨,建筑垃圾处理费30/吨,若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元,

1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?

2)该企业计划2014年将上述两种垃圾处理量减少到240吨,且建筑垃圾处理费不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.