满分5 > 初中数学试题 >

我们定义:如图1,在△ABC看,把AB点A顺时针旋转α(0°<α<180°)得到...

我们定义:如图1,在△ABC看,把ABA顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC旋补三角形”,AB'C'B'C'上的中线AD叫做△ABC旋补中线,点A叫做旋补中心”.

特例感知:

(1)在图2,图3中,△AB'C'是△ABC旋补三角形”,AD是△ABC旋补中线”.

①如图2,当△ABC为等边三角形时,ADBC的数量关系为AD=____BC;

②如图3,当∠BAC=90°,BC=8时,则AD长为____

猜想论证:

(2)在图1中,当△ABC为任意三角形时,猜想ADBC的数量关系,并给予证明.

 

(1)①;②4;(2)AD=BC,证明见解析 【解析】 试题(1)①首先证明△ADB′是含有30°是直角三角形,可得AD=AB′即可解决问题;②首先证明△BAC≌△B′AC′,根据直角三角形斜边中线定理即可解决问题; (2)如图1中,延长AD到Q,使得AD=DQ,连接B′Q,C′Q,根据∠QB′A=∠BAC,QB′=AC′=AC,AB′=AB,即可得到△AQB′≌△BAC,即可解决问题. 试题解析: 【解析】 (1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC; 理由:∵△ABC是等边三角形, ∴AB=BC=AC=AB′=AC′, ∵DB′=DC′, ∴AD⊥B′C′, ∵∠BAC=60°,∠BAC+∠B′AC′=180°, ∴∠B′AC′=120°, ∴∠B′=∠C′=30°, ∴AD=AB′=BC, 故答案为. ②如图3,当∠BAC=90°,BC=8时,则AD长为4. 理由:∵∠BAC=90°,∠BAC+∠B′AC′=180°, ∴∠B′AC′=∠BAC=90°, ∵AB=AB′,AC=AC′, ∴△BAC≌△B′AC′, ∴BC=B′C′, ∵B′D=DC′, ∴AD=B′C′=BC=4, 故答案为4. (2)猜想AD=BC. 证明:如图,延长AD至点Q,则△DQB'≌△DAC', ∴QB'=AC',QB'∥AC', ∴∠QB'A+∠B'AC'=180°, ∵∠BAC+∠B'AC'=180°, ∴∠QB'A=∠BAC, 又由题意得到QB'=AC'=AC,AB'=AB, ∴△AQB'≌△BCA, ∴AQ=BC=2AD, 即AD=BC.  
复制答案
考点分析:
相关试题推荐

某商品现在售价为每件40元,每天可卖200件,该商品将从现在起进行90天的销售:在第x(1x49)天内,当天售价都较前一天增加1元,销量都较前一天减少2件;在x(50x90)天内,当天的售价都是90元,销售仍然是较前一天减少2件,已知该商品的进价为每件30元,设销售商品的当天利润为y元.

(1)求出yx的函数关系式;

(2)销售该商品第几天时,当天销售利润最大,最大利润是多少?

(3)该商品在销售过程中,共有多少天当天销售利润不低于4800元?

 

查看答案

如图,在△ABC中,以AC边为直径作⊙OBC边于点D,交AB于点G,且DBC中点,DEAB,交AB于点E,交AC的延长线交于点F.

(1)求证:直线EF是⊙O的切线.

(2)若CF=3,cosCAB=,求⊙O的半径和线段BD的长.

 

查看答案

如图两艘海监船刚好在某岛东西海岸线上的AB两处巡逻同时发现一艘不明国籍船只停在C处海域AB=60+3)海里B处测得C在北偏东45°方向上A处测得C在北偏西30°方向上在海岸线AB上有一等他D测得AD=100海里

1分别求出ACBC(结果保留根号)

2已知在灯塔D周围80海里范围内有暗礁群A处海监船沿AC前往C处盘看图中有无触礁的危险?请说明理由

 

查看答案

在学校开展的数学活动课上,小明和小刚制作了一个正三楼锥(质量均匀,四个面完全相同),并在各个面上分别标记数字1,2,3,4,游戏规则如下每人投掷三棱锥两次,并记录底面的数字,如果两次所掷数字的和为单数,那么算小明赢,如果两欢所掷数字的和为偶数,那么算小明赢;

(1)请用列表或者面树状围的方法表示上述游戏中的所有可能结果.

(2)请分别隶出小明和小刚能赢的概率,并判新游戏的公平性.

 

查看答案

某校九年级开展征文活动,征文主题只能从爱国”“敬业”“诚信”“友善四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.

(1)求共抽取了多少名学生的征文;

(2)将上面的条形统计图补充完整;

(3)在扇形统计图中,选择爱国主题所对应的圆心角是多少;

(4)如果该校九年级共有1200名学生,请估计选择以友善为主题的九年级学生有多少名.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.