满分5 > 初中数学试题 >

如图,OA和OB是⊙O的半径,OB=2,OA⊥OB,P是OA上任一点,BP的延长...

如图,OAOB是⊙O的半径,OB2OAOBPOA上任一点,BP的延长线交⊙O于点Q,过点Q的⊙O的切线交OA延长线于点R

1)求证:RPRQ

2)若OPPQ,求PQ的长.

 

(1)证明见解析(2) 【解析】 (1)连接OQ,由QR为圆O的切线,得到∠OQR为90°,即∠OQB+∠PQR=90°,由OA与OB垂直,根据垂直的定义得到∠BOA=90°,所以∠B+∠BPO=90°,再根据对顶角相等及等角的余角相等,得到∠RPQ=∠RQP,根据“等角对等边”得证; (2)根据OP=PQ,由“等边对等角”得到∠POQ=∠PQO,又根据半径OB=OQ,再根据“等边对等角”得到∠B=∠BQO,在三角形OBQ中,由∠BOA为直角,设出∠B=∠PQO=∠POQ=x,根据三角形的内角和定理列出关于x的方程,求出方程的解得到x的值,即为∠B的度数,又∠RPQ=∠BPO=60°,PR=QR,所以三角形PRQ为等边三角形,所以PQ=QR,在直角三角形OQR中,根据30°的正切函数定义,由OQ=OB=2,即可求出QR的值,从而得到PQ的长. (1)连接OQ.∵QR是切线,∴∠OQR=90°,∴∠BQO+∠PQR=90°. ∵OA⊥OB,∴∠BOA=90°,∴∠B+∠BPO=90°,又∠BPO=∠RPQ,∴∠B+∠RPQ=90°. 由OB=OQ得:∠B=∠BQO,∴∠RPQ=∠RQP,∴PR=QR; (2)∵OP=PQ,∴∠POQ=∠PQO, 又OB=OQ,∴∠B=∠PQO, 设∠B=∠PQO=∠POQ=x,又∠BOP=90°, 根据三角形内角和定理得: ∠B+∠BOP+∠POQ+∠PQO=180°,即x+90°+x+x=180°, 解得:x=30°,即∠B=30°,∴∠RPQ=∠BPO=60°,又PR=QR,∴△PQR为等边三角形,即PQ=QR=PR, 在直角三角形OQR中,OQ=OB=2, 根据锐角三角函数定义得: .
复制答案
考点分析:
相关试题推荐

已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.

(1)求证:△ABM≌△DCM;

(2)判断四边形MENF是什么特殊四边形,并证明你的结论;

(3)当四边形MENF是正方形时,求AD:AB的值.

 

查看答案

如图,已知点A(1,a)是反比例函数y1=的图象上一点,直线y2=﹣与反比例函数y1=的图象的交点为点BD,且B(3,﹣1),求:

Ⅰ)求反比例函数的解析式;

Ⅱ)求点D坐标,并直接写出y1y2x的取值范围;

Ⅲ)动点Px,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.

 

查看答案

为使中华传统文化教育更具有实效性,军宁中学开展以我最喜爱的传统文化种类为主题的调查活动,围绕在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:

(1)本次调查共抽取了多少名学生?

(2)通过计算补全条形统计图;

(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?

 

查看答案

在正方形网格中有ABC三个点.

(1)在图甲中找到格点D,使得以A、B、C、D四点组成的凸四边形为轴对称图形;

(2)在图乙中找到格E,使得以A、B、C、D、E四点组成的凸四边形不是轴对称图形且△ACE△ACB全等.

 

查看答案

为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.

(1)开通隧道前,汽车从A地到B地大约要走多少千米?

(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.