满分5 > 初中数学试题 >

如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣...

如图1,在平面直角坐标系xOy中,直线l:x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).

(1)求n的值和抛物线的解析式;

(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求pt的函数关系式以及p的最大值;

(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.

 

(1)y=x2﹣x﹣1;(2) ;当t=2时,p有最大值;(3)或; 【解析】 (1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到n的值,然后利用待定系数法求二次函数解析式解答; (2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P与t的关系式,再利用二次函数的最值问题解答; (3)根据逆时针旋转角为90°可得A1O1∥y轴时,B1O1∥x轴,然后分①点O1、B1在抛物线上时,表示出两点的横坐标,再根据纵坐标相同列出方程求解即可;②点A1、B1在抛物线上时,表示出点B1的横坐标,再根据两点的纵坐标相差A1O1的长度列出方程求解即可. (1)∵直线l:y=x+m经过点B(0,﹣1), ∴m=﹣1, ∴直线l的解析式为y=x﹣1, ∵直线l:y=x﹣1经过点C(4,n), ∴n=×4﹣1=2, ∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1), ∴, 解得, ∴抛物线的解析式为y=x2﹣x﹣1; (2)令y=0,则x﹣1=0, 解得x=, ∴点A的坐标为(,0), ∴OA=, 在Rt△OAB中,OB=1, ∴AB=, ∵DE∥y轴, ∴∠ABO=∠DEF, 在矩形DFEG中,EF=DE•cos∠DEF=DE•, DF=DE•sin∠DEF=DE•, ∴p=2(DF+EF)=2(, ∵点D的横坐标为t(0<t<4), ∴D(t,t2﹣t﹣1),E(t,t﹣1), ∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t, ∴p=×(﹣t2+2t)=﹣t2+t, ∵p=﹣(t﹣2)2+,且﹣<0, ∴当t=2时,p有最大值; (3)∵△AOB绕点M沿逆时针方向旋转90°, ∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x, ①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1, ∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1, 解得x=, ②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大, ∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+, 解得x=﹣, 综上所述,点A1的横坐标为或﹣.
复制答案
考点分析:
相关试题推荐

如图,正方形BEFG的边BG在正方形ABCD的边BC上,连结AG,EC.

(1)说出AGCE的大小关系;

(2)图中是否存在通过旋转能够相互重合的两个三角形?若存在,请详细写出旋转过程;若不存在,请说明理由.

(3)请你延长AGCE于点M,判断AMCE的位置关系?并说明理由.

 

查看答案

如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.

(1)ACB=     °,理由是:     

(2)猜想EAD的形状,并证明你的猜想;

(3)若AB=8,AD=6,求BD.

 

查看答案

已知AB是⊙O的直径,弦CDABH,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AGCDK

(1)如图1,求证:KEGE

(2)如图2,连接CABG,若∠FGBACH,求证:CAFE

(3)如图3,在(2)的条件下,连接CGAB于点N,若sinEAK,求CN的长.

 

查看答案

某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.

(1)求A、B型号衣服进价各是多少元?

(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.

 

查看答案

某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球  B乒乓球C羽毛球  D足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:

(1)这次被调查的学生共有      人;

(2)请你将条形统计图(2)补充完整;

(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.