满分5 > 初中数学试题 >

从2,-3,4,-5四个数中任意选出两个数相乘,得到的最大乘积是( ) A. -...

2,-3,4,-5四个数中任意选出两个数相乘得到的最大乘积是(  )

A. -6    B. -12    C. -20    D. 15

 

D 【解析】根据正数大于负数,两个有理数相乘,同号得正,异号得负,只要计算出积为正数的结果,再比较大小,选出最大的乘积. ∵2×4=8,(-3)×(-5)=15, ∴最大乘积是15. 故选D.
复制答案
考点分析:
相关试题推荐

如图1,已知二次函数y=mx2+3mx﹣m的图象与x轴交于A,B两点(点A在点B的左侧),顶点D和点B关于过点A的直线l:y=﹣x﹣对称.

(1)求A、B两点的坐标及二次函数解析式;

(2)如图2,作直线AD,过点BAD的平行线交直线1于点E,若点P是直线AD上的一动点,点Q是直线AE上的一动点.连接DQ、QP、PE,试求DQ+QP+PE的最小值;若不存在,请说明理由:

(3)将二次函数图象向右平移个单位,再向上平移3个单位,平移后的二次函数图象上存在一点M,其横坐标为3,在y轴上是否存在点F,使得∠MAF=45°?若存在,请求出点F坐标;若不存在,请说明理由.

 

查看答案

如图1,在等腰RtABC中,BAC=90°,点E在AC上(且不与点A、C重合),在ABC的外部作等腰RtCED,使CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.

(1)求证:AEF是等腰直角三角形;

(2)如图2,将CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;

(3)如图3,将CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且CED在ABC的下方时,若AB=2,CE=2,求线段AE的长.

 

查看答案

某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%.经试销发现,销售量P(件)与销售单价x(元)符合一次函数关系,当销售单价为65元时销售量为55件,当销售单价为75元时销售量为45件.

(Ⅰ)求Px的函数关系式;

(Ⅱ)若该商场获得利润为y元,试写出利润y与销售单价x之间的关系式;

(Ⅲ)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?

 

查看答案

如图,在ABC中,AB=BC,以AB为直径的⊙OAC于点D,过D作直线DE垂直BCF,且交BA的延长线于点E.

(1)求证:直线DE是⊙O的切线;

(2)若cosBAC=O的半径为6,求线段CD的长.

 

查看答案

有两种包装盒,大盒比小盒可多装20克某一物品.已知120克这一物品单独装满小盒比单独装满大盒多1盒.

(1)问小盒每个可装这一物品多少克?

(2)现有装满这一物品两种盒子共50个.设小盒有n个,所有盒子所装物品的总量为w克.

①求w关于n的函数解析式,并写出定义域;

②如果小盒所装物品总量与大盒所装物品总量相同,求所有盒子所装物品的总量.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.