满分5 > 初中数学试题 >

已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边...

已知:如图,在梯形ABCD中,ABCD,∠D=90°,ADCD=2,点E在边AD上(不与点AD重合),∠CEB=45°,EB与对角线AC相交于点F,设DEx

(1)用含x的代数式表示线段CF的长;

(2)如果把△CAE的周长记作CCAE,△BAF的周长记作CBAF,设y,求y关于x的函数关系式,并写出它的定义域;

(3)当∠ABE的正切值是 时,求AB的长.

 

(1)CF=;(2)y=(0<x<2);(3)AB=2.5. 【解析】 试题(1)根据等腰直角三角形的性质,求得∠DAC=∠ACD=45°,进而根据两角对应相等的两三角形相似,可得△CEF∽△CAE,然后根据相似三角形的性质和勾股定理可求解; (2)根据相似三角形的判定与性质,由三角形的周长比可求解; (3)由(2)中的相似三角形的对应边成比例,可求出AB的关系,然后可由∠ABE的正切值求解. 试题解析:(1)∵AD=CD. ∴∠DAC=∠ACD=45°, ∵∠CEB=45°, ∴∠DAC=∠CEB, ∵∠ECA=∠ECA, ∴△CEF∽△CAE, ∴, 在Rt△CDE中,根据勾股定理得,CE=, ∵CA=2, ∴, ∴CF=; (2)∵∠CFE=∠BFA,∠CEB=∠CAB, ∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA, ∵∠ABF=180°﹣∠CAB﹣∠AFB, ∴∠ECA=∠ABF, ∵∠CAE=∠ABF=45°, ∴△CEA∽△BFA, ∴y====(0<x<2), (3)由(2)知,△CEA∽△BFA, ∴, ∴, ∴AB=x+2, ∵∠ABE的正切值是, ∴tan∠ABE===, ∴x=, ∴AB=x+2=.  
复制答案
考点分析:
相关试题推荐

如图,在一条笔直公路BD的正上方A处有一探测仪,AD=24m,D=90°,一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°.

(Ⅰ)求B,C两点间的距离(结果精确到1m);

(Ⅱ)若规定该路段的速度不得超过15m/s,判断此轿车是否超速.

参考数据:tan31°0.6,tan50°1.2.

 

查看答案

为使中华传统文化教育更具有实效性,军宁中学开展以我最喜爱的传统文化种类为主题的调查活动,围绕在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:

(1)本次调查共抽取了多少名学生?

(2)通过计算补全条形统计图;

(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?

 

查看答案

某跑道一圈长为400米,若甲.乙两运动员从同一起点出发,相背而行,25秒后相遇;若甲从起点先跑2秒钟后,乙从该点同向出发追甲,再过3秒钟后乙追上甲,求甲.乙两人各自的速度是多少?

 

查看答案

(1)+(1﹣+-1

(2)(-1+﹣1)0×|1﹣|

(3)(a+2)2﹣a(1﹣a)﹣(2﹣3a)(a+2);

(4)(÷

 

查看答案

观察如图给出的四个点阵,请按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数为_____

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.