满分5 > 初中数学试题 >

抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相...

抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.

(1)求这条抛物线的表达式;

(2)求∠ACB的度数;

(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DEAC,当DCEAOC相似时,求点D的坐标.

 

(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D(,). 【解析】 试题把点的坐标代入即可求得抛物线的解析式. 作BH⊥AC于点H,求出的长度,即可求出∠ACB的度数. 延长CD交x轴于点G,△DCE∽△AOC,只可能∠CAO=∠DCE.求出直线的方程,和抛物线的方程联立即可求得点的坐标. 试题解析:(1)由题意,得 解得. ∴这条抛物线的表达式为. (2)作BH⊥AC于点H, ∵A点坐标是(-1,0),C点坐标是(0,3),B点坐标是(,0), ∴AC=,AB=,OC=3,BC=. ∵,即∠BAD=, ∴. Rt△ BCH中,,BC=,∠BHC=90º, ∴. 又∵∠ACB是锐角,∴. (3)延长CD交x轴于点G, ∵Rt△ AOC中,AO=1,AC=, ∴. ∵△DCE∽△AOC,∴只可能∠CAO=∠DCE. ∴AG = CG. ∴. ∴AG=5.∴G点坐标是(4,0). ∵点C坐标是(0,3),∴. ∴ 解得,(舍). ∴点D坐标是  
复制答案
考点分析:
相关试题推荐

“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.

(1)求每台型、型净水器的进价各是多少元;

(2)槐荫公司计划购进两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.

 

查看答案

阅读理【解析】
数和形是数学的两个主要研究对象,我们经常运用数形结合,树形转化的方法解决一些数学问题,小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点
P1x1y1),P2x2y2),可通过构造直角三角形利用图1得到结论:P1P2=,他还利用图2证明了线段P1P2的中点Pxy),P的坐标公式:x=y=

启发应用:

如图3:在平面直角坐标系中,已知A80),B06),C17),M经过原点O及点AB

1)求⊙M的半径及圆心M的坐标;

2)判断点C与⊙M的位置关系,并说明理由;

3)若∠BOA的平分线交AB于点N,交⊙M于点E,分别求出OE的表达式y1,过点M的反比例函数的表达式y2,并根据图象,当y2y10时,请直接写出x的取值范围.

 

查看答案

已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DBCB的延长线于G.

(1)求证:△CDB≌△BAG.

(2)如果四边形BFDE是菱形,那么四边形AGBD是什么特殊四边形?并证明你的结论.

 

查看答案

如图,某商场为方便顾客使用购物车,准备将滚动电梯的坡面的倾斜角由45°降为30°,如果改动前电梯的坡面AB长为12米,点D、B、C在同一水平地面上.求改动后电梯水平宽度增加部分BC的长.(结果精确到0.1,参考数据:

 

查看答案

某校有1500名学生,为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到下列图表(频数分布表中部分划记被墨水盖住):

                             某校100名学生上学方式频数分布表

方式

划记

频数

步行

正正正

15

骑车

正正正正正

29

乘公共交通工具

正正正正正正

30

乘私家车

 

 

其它

 

 

合计

 

100

 

(1)本次调查的个体是     

(2)求频数分布表中,乘私家车部分对应的频数.

(3)请估计该校1500名学生中,选择骑车、乘公交和步行上学的一共有多少人?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.