满分5 > 初中数学试题 >

我们定义:如图1,在△ABC看,把AB点A顺时针旋转α(0°<α<180°)得到...

我们定义:如图1,在△ABC看,把ABA顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC旋补三角形”,AB'C'B'C'上的中线AD叫做△ABC旋补中线,点A叫做旋补中心”.

特例感知:

(1)在图2,图3中,△AB'C'是△ABC旋补三角形”,AD是△ABC旋补中线”.

①如图2,当△ABC为等边三角形时,ADBC的数量关系为AD=____BC;

②如图3,当∠BAC=90°,BC=8时,则AD长为____

猜想论证:

(2)在图1中,当△ABC为任意三角形时,猜想ADBC的数量关系,并给予证明.

 

(1)①;②4;(2)AD=BC,证明见解析 【解析】 试题(1)①首先证明△ADB′是含有30°是直角三角形,可得AD=AB′即可解决问题;②首先证明△BAC≌△B′AC′,根据直角三角形斜边中线定理即可解决问题; (2)如图1中,延长AD到Q,使得AD=DQ,连接B′Q,C′Q,根据∠QB′A=∠BAC,QB′=AC′=AC,AB′=AB,即可得到△AQB′≌△BAC,即可解决问题. 试题解析: 【解析】 (1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC; 理由:∵△ABC是等边三角形, ∴AB=BC=AC=AB′=AC′, ∵DB′=DC′, ∴AD⊥B′C′, ∵∠BAC=60°,∠BAC+∠B′AC′=180°, ∴∠B′AC′=120°, ∴∠B′=∠C′=30°, ∴AD=AB′=BC, 故答案为. ②如图3,当∠BAC=90°,BC=8时,则AD长为4. 理由:∵∠BAC=90°,∠BAC+∠B′AC′=180°, ∴∠B′AC′=∠BAC=90°, ∵AB=AB′,AC=AC′, ∴△BAC≌△B′AC′, ∴BC=B′C′, ∵B′D=DC′, ∴AD=B′C′=BC=4, 故答案为4. (2)猜想AD=BC. 证明:如图,延长AD至点Q,则△DQB'≌△DAC', ∴QB'=AC',QB'∥AC', ∴∠QB'A+∠B'AC'=180°, ∵∠BAC+∠B'AC'=180°, ∴∠QB'A=∠BAC, 又由题意得到QB'=AC'=AC,AB'=AB, ∴△AQB'≌△BCA, ∴AQ=BC=2AD, 即AD=BC.  
复制答案
考点分析:
相关试题推荐

家用电灭蚊器的发热部分使用了PTC发热材料,它的电阻R(kΩ)随温度t(℃)(在一定范围内)变化的大致图象如图所示.通电后,发热材料的温度在由室温10℃上升到30℃的过程中,电阻与温度成反例关系,且在温度达到30℃时,电阻下降到最小值;随后电阻承温度升高而增加,温度每上升1℃,电阻增加kΩ.

(1)求Rt之间的关系式;

(2)家用电灭蚊器在使用过程中,温度在什么范围内时,发热材料的电阻不超过4kΩ.

 

查看答案

重庆八中宏帆中学某年级为了选拔参加全国汉字听写大赛重庆赛区比赛的队员,特在年级举行全体学生的汉字听写比赛,首轮每位学生听写汉字39个.现随机抽取了部分学生的听写结果,绘制成如图的图表.

组别

正确字数x

人数

A

0≤x<8

10

B

8≤x<16

15

C

16≤x<24

25

D

24≤x<32

m

E

32≤x<40

n

 

根据以上信息完成下列问题:

(1)统计表中的m=   ,n=   ,并补全条形统计图;

(2)已知该年级共有1500名学生,如果听写正确的字的个数不少于24个则进入第二轮的比赛,请你估计本次听写比赛顺利进入第二轮的学生人数;

(3)第二轮比赛过后,为了更有针对性地应对本次大赛,该年级决定从没有担任班主任的5个语文老师(其中3个男老师2个女老师)中随机抽取两个老师对胜出的学生进行培训、辅导.请用树状图或列表法求出抽取的两个老师恰好都是男老师的概率.

 

查看答案

如图,在ABC中,AB=AC,AE是角平分线,BM平分∠ABCAE于点M,经过B、M两点的⊙OBC于点G,交AB于点F,FB恰为⊙O的直径.

(1)判断AE与⊙O的位置关系,并说明理由;

(2)若BC=6,AC=4CE时,求⊙O的半径.

 

查看答案

为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:

信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;

信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.

根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.

 

查看答案

如图,在平行四边形ABCD中将ABC沿AC对折,使点B落在B′处,AB′CD相交于O,求证:OD=OB′.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.