满分5 > 初中数学试题 >

如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点...

如图,在△ABC中,∠ACB=90°,ABC=30°,CDE是等边三角形,点D在边AB上.

(1)如图1,当点E在边BC上时,求证DE=EB;

(2)如图2,当点E在△ABC内部时,猜想EDEB数量关系,并加以证明;

(3)如图3,当点E在△ABC外部时,EHAB于点H,过点EGEAB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.

 

(1)证明见解析;(2)ED=EB,证明见解析;(3)CG=2. 【解析】 试题(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=30°,从而得出DE=BE;(2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;(3)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案. 试题解析:(1)、证明:∵△CDE是等边三角形, ∴∠CED=60°, ∴∠EDB=60°﹣∠B=30°, ∴∠EDB=∠B, ∴DE=EB; (2)、【解析】 ED=EB, 理由如下:取AB的中点O,连接CO、EO, ∵∠ACB=90°,∠ABC=30°, ∴∠A=60°,OC=OA, ∴△ACO为等边三角形, ∴CA=CO, ∵△CDE是等边三角形, ∴∠ACD=∠OCE,∴△ACD≌△OCE, ∴∠COE=∠A=60°,∴∠BOE=60°, ∴△COE≌△BOE, ∴EC=EB, ∴ED=EB; (3)、取AB的中点O,连接CO、EO、EB, 由(2)得△ACD≌△OCE, ∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB, ∵EH⊥AB, ∴DH=BH=3,∵GE∥AB, ∴∠G=180°﹣∠A=120°, ∴△CEG≌△DCO, ∴CG=OD, 设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB, ∴4a=a+3+3, 解得,a=2, 即CG=2.  
复制答案
考点分析:
相关试题推荐

在某市实施城中村改造的过程中,旺鑫拆迁工程队承包了一项10000 m2的拆迁工程.由于准备工作充分,实际拆迁效率比原计划提高了25%,提前2天完成了任务,请解答下列问题:

(1)旺鑫拆迁工程队现在平均每天拆迁多少平方米;

(2)为了尽量减少拆迁给市民带来的不便,在拆迁工作进行了2天后,旺鑫拆迁工程队的领导决定加快拆迁工作,将余下的拆迁任务在5天内完成,那么旺鑫拆迁工程队平均每天至少再多拆迁多少平方米?

 

查看答案

如图,已知正比例函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4,

(1)求k的值;

(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;

(3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.

 

查看答案

如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离AD为100米,试求这栋楼的高度BC.

 

查看答案

如图,点P⊙O的直径AB的延长线上,PC⊙O的切线,点C为切点,连接AC,过点APC的垂线,点D为垂足,AD⊙O于点E.

(1)如图1,求证:∠DAC=∠PAC;

(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,,连接EF,过点FAD的平行线交PC于点G,求证:FG=DE+DG;

(3)(2)的条件下,如图3,若AE=DG,PO=5,求EF的长.

 

查看答案

某校九年级开展征文活动,征文主题只能从爱国”“敬业”“诚信”“友善四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.

(1)求共抽取了多少名学生的征文;

(2)将上面的条形统计图补充完整;

(3)在扇形统计图中,选择爱国主题所对应的圆心角是多少;

(4)如果该校九年级共有1200名学生,请估计选择以友善为主题的九年级学生有多少名.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.