满分5 > 初中数学试题 >

抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相...

抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.

(1)求这条抛物线的表达式;

(2)求∠ACB的度数;

(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DEAC,当DCEAOC相似时,求点D的坐标.

 

(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D(,). 【解析】 试题把点的坐标代入即可求得抛物线的解析式. 作BH⊥AC于点H,求出的长度,即可求出∠ACB的度数. 延长CD交x轴于点G,△DCE∽△AOC,只可能∠CAO=∠DCE.求出直线的方程,和抛物线的方程联立即可求得点的坐标. 试题解析:(1)由题意,得 解得. ∴这条抛物线的表达式为. (2)作BH⊥AC于点H, ∵A点坐标是(-1,0),C点坐标是(0,3),B点坐标是(,0), ∴AC=,AB=,OC=3,BC=. ∵,即∠BAD=, ∴. Rt△ BCH中,,BC=,∠BHC=90º, ∴. 又∵∠ACB是锐角,∴. (3)延长CD交x轴于点G, ∵Rt△ AOC中,AO=1,AC=, ∴. ∵△DCE∽△AOC,∴只可能∠CAO=∠DCE. ∴AG = CG. ∴. ∴AG=5.∴G点坐标是(4,0). ∵点C坐标是(0,3),∴. ∴ 解得,(舍). ∴点D坐标是  
复制答案
考点分析:
相关试题推荐

已知AB是⊙O的直径,弦CDABH,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AGCDK

(1)如图1,求证:KEGE

(2)如图2,连接CABG,若∠FGBACH,求证:CAFE

(3)如图3,在(2)的条件下,连接CGAB于点N,若sinEAK,求CN的长.

 

查看答案

如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)

(1)若△CEF与△ABC相似,且当AC=BC=2时,求AD的长;

(2)若△CEF与△ABC相似,且当AC=3,BC=4时,求AD的长;

(2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.

 

查看答案

甲、乙两公司各为希望工程捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?

 

查看答案

在学校开展的数学活动课上,小明和小刚制作了一个正三楼锥(质量均匀,四个面完全相同),并在各个面上分别标记数字1,2,3,4,游戏规则如下每人投掷三棱锥两次,并记录底面的数字,如果两次所掷数字的和为单数,那么算小明赢,如果两欢所掷数字的和为偶数,那么算小明赢;

(1)请用列表或者面树状围的方法表示上述游戏中的所有可能结果.

(2)请分别隶出小明和小刚能赢的概率,并判新游戏的公平性.

 

查看答案

如图,点A(a,a+5)和点B(6,a+1)都在双曲线y=(k<0)上.

(1)求k的值;

(2)求AOB的面积.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.