如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( )
A. 主视图 B. 俯视图 C. 左视图 D. 一样大
我市今年参加中考人数约为42000人,将42000用科学记数法表示为( )
A. 4.2×104 B. 0.42×105 C. 4.2×103 D. 42×103
六个数﹣5,,﹣0.1,
,cos60°,tan30°中为无理数的( )
A. 1个 B. 2个 C. 3个 D. 4个
已知二次函数y=ax2﹣4ax+3a.
(Ⅰ)求该二次函数的对称轴;
(Ⅱ)若该二次函数的图象开口向下,当1≤x≤4时,y的最大值是2,且当1≤x≤4时,函数图象的最高点为点P,最低点为点Q,求△OPQ的面积;
(Ⅲ)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥5时,均满足y1≥y2,请结合图象,直接写出t的最大值.
如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)求证:△AEF是等腰直角三角形;
(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.
如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作EF⊥AB于点F,交AC的延长线于点E.
(1)判断EF与⊙O的位置关系,并说明理由;
(2)若AF=6,sinE=,求BF的长.