满分5 > 初中数学试题 >

已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,...

已知:ABCADE均为等边三角形,连接BECD,点FGH分别为DEBECD中点.

(1)当ADE绕点A旋转时,如图1,则FGH的形状为      ,说明理由;

(2)在ADE旋转的过程中,当BDE三点共线时,如图2,若AB=3,AD=2,求线段FH的长;

(3)在ADE旋转的过程中,若AB=aAD=bab>0),则FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.

 

(1)△FGH是等边三角形;(2);(3)△FGH的周长最大值为(a+b),最小值为(a﹣b). 【解析】试题(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、 (2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可; (3)首先证明△GFH的周长=3GF=BD,求出BD的最大值和最小值即可解决问题; 试题解析:【解析】 (1)结论:△FGH是等边三角形.理由如下: 如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O. ∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=BD,GF∥BD,∵DF=EF,DH=HC,∴FH=EC,FH∥EC,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60° ∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形. (2)如图2中,连接AF、EC. 易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF==,在Rt△ABF中,BF= =,∴BD=CE=BF﹣DF=,∴FH=EC=. (3)存在.理由如下. 由(1)可知,△GFH是等边三角形,GF=BD,∴△GFH的周长=3GF=BD,在△ABD中,AB=a,AD=b,∴BD的最小值为a﹣b,最大值为a+b,∴△FGH的周长最大值为(a+b),最小值为(a﹣b).
复制答案
考点分析:
相关试题推荐

已知关于x的方程x2﹣(2k+1)x+k2+1=0.

(1)若方程有两个不相等的实数根,求k的取值范围;

(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L的长.

 

查看答案

如图,AB是⊙O的一条弦,EAB的中点,过点EECOA于点C,过点B作⊙O的切线交CE的延长线于点D.

(1)求证:DB=DE;

(2)若AB=12,BD=5,求⊙O的半径.

 

查看答案

某校组织学生去9km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.己知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?

 

查看答案

为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”“绘画类”“舞蹈类”“音乐类”“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.

(1)参加音乐类活动的学生人数为____人,参加球类活动的人数的百分比为____;

(2)请把条形统计图补充完整;

(3)若该校学生共600人,那么参加棋类活动的大约有多少人?

(4)该班参加舞蹈类活动的4位同学中,有1位男生(E表示)3位女生(分别用F,G,H表示),现准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.

 

查看答案

(1)计算:| -1|+(2 017-π)0-()1-3tan 30°+

(2)解不等式组:并把解集在数轴上表示出来.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.