满分5 > 初中数学试题 >

如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点...

如图,在△ABC中,∠ACB=90°,ABC=30°,CDE是等边三角形,点D在边AB上.

(1)如图1,当点E在边BC上时,求证DE=EB;

(2)如图2,当点E在△ABC内部时,猜想EDEB数量关系,并加以证明;

(3)如图3,当点E在△ABC外部时,EHAB于点H,过点EGEAB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.

 

(1)证明见解析;(2)ED=EB,证明见解析;(3)CG=2. 【解析】 试题(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=30°,从而得出DE=BE;(2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;(3)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案. 试题解析:(1)、证明:∵△CDE是等边三角形, ∴∠CED=60°, ∴∠EDB=60°﹣∠B=30°, ∴∠EDB=∠B, ∴DE=EB; (2)、【解析】 ED=EB, 理由如下:取AB的中点O,连接CO、EO, ∵∠ACB=90°,∠ABC=30°, ∴∠A=60°,OC=OA, ∴△ACO为等边三角形, ∴CA=CO, ∵△CDE是等边三角形, ∴∠ACD=∠OCE,∴△ACD≌△OCE, ∴∠COE=∠A=60°,∴∠BOE=60°, ∴△COE≌△BOE, ∴EC=EB, ∴ED=EB; (3)、取AB的中点O,连接CO、EO、EB, 由(2)得△ACD≌△OCE, ∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB, ∵EH⊥AB, ∴DH=BH=3,∵GE∥AB, ∴∠G=180°﹣∠A=120°, ∴△CEG≌△DCO, ∴CG=OD, 设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB, ∴4a=a+3+3, 解得,a=2, 即CG=2.  
复制答案
考点分析:
相关试题推荐

我市佳禾农场的十余种有机蔬菜在北京市场上颇具竞争力.某种有机蔬菜上市后,一经销商在市场价格为10/千克时,从佳禾农场收购了某种有机蔬菜2000 千克存放入冷库中.据预测,该种蔬菜的市场价格每天每千克将上涨0.2元,但冷库存放这批蔬菜时每天需要支出各种费用合计148元,已知这种蔬莱在冷库中最多保存90天,同时,平均每天将会有6千克的蔬菜损坏不能出售.

(1)若存放x天后,将这批蔬菜一次性出售,设这批蔬菜的销售总金额为y元,试写出yx之间的函数关系式.

(2)经销商想获得利润7200元,需将这批蔬菜存放多少天后出售?(利润=销售总金额﹣收购成本﹣各种费用)

(3)经销商将这批蔬菜存放多少天后出售可获得最大利润?最大利润是多少?

 

查看答案

(本题8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BCAC交于点DE,过点D⊙O的切线DF,交AC于点F

1)求证:DF⊥AC

2)若⊙O的半径为4∠CDF=22,求阴影部分的面积.

 

查看答案

如图,在平行四边形ABCD中,CE平分∠BCD,交AB边于点E,EFBC,交CD于点F,点GBC边的中点,连接GF,且∠1=2,CEGF交于点M,过点MMHCD于点H.

(1)求证:四边形BCFE是菱形;

(2)若CH=1,求BC的长;

(3)求证:EM=FG+MH.

 

查看答案

在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣2、l、2,它们除了数字不同外,其它都完全相同.

(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字l的小球的概率为     

(2)小红先从布袋中随机摸出一个小球,记下数字作为k的值,再把此球放回袋中搅匀,由小亮从布袋中随机摸出一个小球,记下数字作为b的值,请用树状图或表格列出k、b的所有可能的值,并求出直线y=kx+b不经过第四象限的概率.

 

查看答案

为了了解七年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α36°,根据图表中提供的信息,回答下列问题:

体育成绩统计表

体育成绩(分)

人数(人)

百分比(%)

26

8

16

27

12

24

28

15

 

29

n

 

30

 

 

 

(1)求样本容量及n的值;

(2)已知该校七年级共有500名学生,如果体育成绩达28分以上为优秀,请估计该校七年级学生体育成绩达到优秀的总人数.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.