二次函数y=
+bx+c与一次函数y=kx﹣3的图象都经过x轴上的点A(4,0)和y轴上点C(0,﹣3).
(1)直接写出b,c,k的值,b= ,c= ,k= ;
(2)二次函数与x轴的另一个交点为B,点M(m,0)在线段AB上运动,过点M作x轴的垂线交直线AC于点D;交抛物线于点P.
①是否存在实数m,使△PCD为直角三角形.若存在、求出m的值;若不存在,请说明理由;
②当0<m<4时,过D作直线AC的垂线交x轴于点Q,求PD+DQ的最大值.

如图,矩形ABCD中,AB=6,BC=6
,动点P从点A出发,以每秒
个单位长度的速度沿线段AD运动,动点Q从点D出发,以每秒2个单位长度的速度沿折线段D﹣O﹣C运动,已知P、Q同时开始移动,当动点P到达D点时,P、Q同时停止运动.设运动时间为t秒.

(1)当t=1秒时,求动点P、Q之间的距离;
(2)若动点P、Q之间的距离为4个单位长度,求t的值;
(3)若线段PQ的中点为M,在整个运动过程中;直接写出点M运动路径的长度为 .
如图,已知直角△ABC中,∠ABC=90°,BC为圆O的直径,D为圆O与斜边AC的交点,DE为圆O的切线,DE交AB于F,且CE⊥DE.
(1)求证:CA平分∠ECB;
(2)若DE=3,CE=4,求AB的长;
(3)记△BCD的面积为S1,△CDE的面积为S2,若S1:S2=3:2.求sin∠AFD的值.

如图,直线y=-
x+b(b>0)与x轴、y轴分别交于点A、B,与双曲线y=-
(x<0)交于点C.
(1)若△AOB的面积为2,求b的值;
(2)连接OC,若△AOC的面积为2,求b的值.

一个分数(分子、分母均为正整数)的分母比它的分子大5.
(1)若将这个分数的分子加上14,分母减去1,则所得的分数是原分数的倒数,求这个分数;
(2)若将这个分数的分子、分母同时加上4,试比较所得的分数和原分数的大小.
某校为了解学生“自主学习、合作交流” 的情况,对某班部分同学进行了一段时间的跟踪调查,将调查结果(A:特别好;B:好;C:一般;D:较差)绘制成以下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:
(1)补全条形统计图;
(2)扇形统计图中,求类所占圆心角的度数;![]()
(3)学校想从被调查的类(1名男生2名女生)和D类(男女生各占一半)中分别选取一位同学进行“一帮一”互助学习,请用画树形图或列表的方法求所选的两位同学恰好是一男一女的概率.![]()

