满分5 > 初中数学试题 >

(题文)如图,已知抛物线经过,两点,顶点为. (1)求抛物线的解析式; (2)将...

(题文)如图,已知抛物线经过两点,顶点为.

(1)求抛物线的解析式;

(2)将绕点顺时针旋转后,点落在点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;

(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.

 

(1)抛物线的解析式为.(2)平移后的抛物线解析式为:.(3)点的坐标为或. 【解析】(1)利用待定系数法,将点A,B的坐标代入解析式即可求得; (2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2, 可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2-3x+1; (3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想. 详解: (1)已知抛物线经过,, ∴,解得, ∴所求抛物线的解析式为. (2)∵,,∴,, 可得旋转后点的坐标为. 当时,由得, 可知抛物线过点. ∴将原抛物线沿轴向下平移1个单位长度后过点. ∴平移后的抛物线解析式为:. (3)∵点在上,可设点坐标为, 将配方得,∴其对称轴为.由题得B1(0,1). ①当时,如图①, ∵, ∴, ∴, 此时, ∴点的坐标为. ②当时,如图②, 同理可得, ∴, 此时, ∴点的坐标为. 综上,点的坐标为或.
复制答案
考点分析:
相关试题推荐

我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:01,如二进制中等于十进制的数6, 等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?

 

查看答案

绕点逆时针旋转到使在同一直线上,若,则图中阴影部分面积为________.

 

查看答案

若不等式组的解集为,则________.

 

查看答案

如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于两点,过作直线轴负方向相交成的角,且交轴于点,以点为圆心的圆与轴相切于点.

(1)求直线的解析式;

(2)将以每秒1个单位的速度沿轴向左平移,当第一次与外切时,求平移的时间.

 

查看答案

如图,要在木里县某林场东西方向的两地之间修一条公路,已知点周围200米范围内为原始森林保护区,在上的点处测得的北偏东方向上,从向东走600米到达处,测得在点的北偏西方向上.

(1)是否穿过原始森林保护区?为什么?(参数数据:

(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高,则原计划完成这项工程需要多少天?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.