满分5 > 初中数学试题 >

如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=...

如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=y.
(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系式;
(2)如果∠BAC=α,∠DAE=β,当α,β满足怎样的关系时,(1)中y与x之间的函数关系式还成立?试说明理由.

manfen5.com 满分网
(1)利用等腰三角形的性质得∠ABD=∠ACE=105°,利用等量代换求得∠CAE=∠ADB,故△ADB∽△EAC后,得,即所以y=; (2)要使y=,即成立,则要△ADB∽△EAC.由于∠ABD=∠ECA,故只须∠ADB=∠EAC,利用三角形的内角和和邻补角的概念求得∠EAC+∠BAD=β-α,∠ADB+∠BAD=∠ABC=90°-,所以只90°-=β-α,须即β-=90°. 【解析】 (1)在△ABC中,AB=AC=1,∠BAC=30°, ∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°, ∵∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB, ∴△ADB∽△EAC, ∴ 即,所以y=; (2)当α、β满足关系式β-时,函数关系式y=成立, 理由如下:∵β-=90°, ∴β-α=90°-. 又∵∠EAC=∠DAE-∠BAC-∠DAB=β-α-∠DAB, ∠ADB=∠ABC-∠DAB=90°--∠DAB, ∴∠ADB=∠EAC; 又∵∠ABD=∠ECA, ∴△ADB∽△EAC, ∴, ∴, ∴y=.
复制答案
考点分析:
相关试题推荐
如图,点I是△ABC的内心,线段AI的延长线交△ABC的外接圆于点D,交BC边于点E.
(1)求证:ID=BD;
(2)设△ABC的外接圆的半径为5,ID=6,AD=x,DE=y,当点A在优弧manfen5.com 满分网上运动时,求y与x的函数关系式,并指出自变量x的取值范围.

manfen5.com 满分网 查看答案
有一个Rt△ABC,∠A=90°,∠B=60°,AB=1,将它放在直角坐标系中,使斜边BC在x轴上,直角顶点A在反比例函数y=manfen5.com 满分网的图象上,求点C的坐标.

manfen5.com 满分网 查看答案
在△ABC中,设BC=x,BC上的高为y,△ABC的面积等于4.
(1)写出y和x之间的函数关系式,并指出自变量x的取值范围;然后作出它的函数图象;
(2)当△ABC为等腰直角三角形时,求出图象上对应点D、E的坐标;
(3)求△DOE的面积.

manfen5.com 满分网 查看答案
“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数y=manfen5.com 满分网的图象交于点P,以P为圆心、以2OP为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=manfen5.com 满分网∠AOB.要明白帕普斯的方法,请研究以下问题:
(1)设P(a,manfen5.com 满分网)、R(b,manfen5.com 满分网),求直线OM对应的函数表达式(用含a,b的代数式表示);
(2)分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=manfen5.com 满分网∠AOB;
(3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明).

manfen5.com 满分网 查看答案
如图.反比例函数y=-manfen5.com 满分网与一次函数y=-x+2的图象交于A、B两点.
(1)求A、B两点的坐标;
(2)求△AOB的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.