满分5 > 初中数学试题 >

已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且B...

已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.
(1)求证:BF=AC;
(2)求证:CE=manfen5.com 满分网BF;
(3)CE与BG的大小关系如何?试证明你的结论.

manfen5.com 满分网
(1)利用ASA判定Rt△DFB≌Rt△DAC,从而得出BF=AC. (2)利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC=BF (3)利用等腰三角形“三线合一”)和勾股定理即可求解. (1)证明:∵CD⊥AB,∠ABC=45°, ∴△BCD是等腰直角三角形. ∴BD=CD. ∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC, ∴∠DBF=∠DCA. 在Rt△DFB和Rt△DAC中, ∵ ∴Rt△DFB≌Rt△DAC(ASA). ∴BF=AC; (2)证明:∵BE平分∠ABC, ∴∠ABE=∠CBE. 在Rt△BEA和Rt△BEC中 , ∴Rt△BEA≌Rt△BEC(ASA). ∴CE=AE=AC. 又由(1),知BF=AC, ∴CE=AC=BF; (3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD. H为BC中点,则DH⊥BC(等腰三角形“三线合一”) 连接CG,则BG=CG,∠GCB=∠GBC=∠ABC=×45°=22.5°,∠EGC=45°. 又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE. ∵△GEC是直角三角形, ∴CE2+GE2=CG2, ∵DH垂直平分BC, ∴BG=CG, ∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=CE, ∴BG>CE.
复制答案
考点分析:
相关试题推荐
为选派一名学生参加全市实践活动技能竞赛,A、B两位同学在学校实习基地现场进行加工直径为20mm的零件的测试,他俩各加工的10个零件的相关数据依次如下图表所示(单位:mm)

平均数

方差
完全符合
要求个数
A    200.026    2
  B    20  SB2    5
根据测试得到的有关数据,试解答下列问题:
(1)考虑平均数与完全符合要求的个数,你认为______的成绩好些;
(2)计算出SB2的大小,考虑平均数与方差,说明谁的成绩好些;
(3)考虑图中折线走势及竞赛中加工零件个数远远超过10个的实际情况,你认为派谁去参赛较合适?说明你的理由.manfen5.com 满分网
查看答案
(1)判断下列各式是否成立,你认为成立的请在括号内打“√”,不成立的打“×”.
manfen5.com 满分网( );②manfen5.com 满分网( );
manfen5.com 满分网( );④manfen5.com 满分网( )
(2)你判断完以上各题之后,发现了什么规律请用含有n的式子将规律表示出来,并注明n的取值范围:______
查看答案
先将manfen5.com 满分网化简,然后自选一个合适的x值,代入化简后的式子求值.
查看答案
已知:△ABC中,D是BC上的一点,E、F、G、H分别是BD、BC、AC、AD的中点,
求证:EG、HF互相平分.

manfen5.com 满分网 查看答案
附加题:等边三角形给人以“稳如泰山”的美感,它具有独特的对称性,请你用两种不同的分割方法,将以下两个等边三角形分别割成四个等腰三角形.(在图中画出分割线,并标出必要的角的度数)
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.