满分5 > 初中数学试题 >

在△AOB中,AB=OB=2,△COD中,CD=OC=3,∠ABO=∠DCO.连...

在△AOB中,AB=OB=2,△COD中,CD=OC=3,∠ABO=∠DCO.连接AD、BC,点M、N、P分别为OA、OD、BC的中点.
①若A、O、C三点在同一直线上,且∠ABO=2α,则manfen5.com 满分网=    (用含有α的式子表示);
②固定△AOB,将△COD绕点O旋转,PM最大值为   
manfen5.com 满分网
(1)连接BM、CN,则BM⊥OA,CN⊥OD,由四点共圆的判定知点B、C、M、N在以BC为直径的圆,且有MP=PN=BC÷2,而MN是△AOD的中位线,有MN等于AD的一半,故AD:BC=MN:PM,而可求得△PMN∽△BAO,有MN:PN=AO:AB=2sinα,从而求得AD:BC的值; (2)当DC∥AB时,即四边形ABCO是梯形时,PM有最大值,由梯形的中位线的公式可求解. 【解析】 连接BM、CN, 由题意知BM⊥OA,CN⊥OD,∠AOB=∠COD=90°-α, ∵A、O、C三点在同一直线上, ∴B、O、D三点也在同一直线上, ∴∠BMC=∠CNB=90°, ∵P为BC中点, ∴在Rt△BMC中,PM=BC,在Rt△BNC中,PN=BC, ∴PM=PN, ∴B、C、N、M四点都在以点P为圆心,BC为半径的圆上, ∴∠MPN=2∠MBN, 又∵∠MBN=∠ABO=α, ∴∠MPN=∠ABO, ∴△PMN∽△BAO, ∴, 由题意知MN=AD,PM=BC, ∴, ∴, 在Rt△BMA中,=sinα, ∵AO=2AM, ∴=2sinα, ∴=2sinα; (2)当DC∥AB时,即四边形ABCO是梯形时,PM有最大值. PM=(AB+CD)÷2=(2+3)÷2=.
复制答案
考点分析:
相关试题推荐
已知边长为a的正三角形ABC,两顶点A、B分别在平面直角坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则OC的长的最大值是   
manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,函数manfen5.com 满分网(k>0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC.若三角形ABC的面积为3,则点B的坐标为   
manfen5.com 满分网 查看答案
如图,▱ABCD中,E是CD中点,AE与对角线BD交于G,AE的延长线交BC的延长线于F,则DG:BG=    ,△CEF与△ABF周长比为    ,△DEG与△CEF的面积比为   
manfen5.com 满分网 查看答案
如图,已知点A在双曲线y=manfen5.com 满分网上,且OA=4,过A作AC⊥x轴于C,OA的垂直平分线交OC于B,则△AOC的面积=    ;△ABC的周长为   
manfen5.com 满分网 查看答案
如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3,而且6=1+2+3,所以6是完全数.大约2200多年前,欧几里德提出:如果2n-1是质数,那么2n-1(2n-1)是一个完全数.请你根据这个结论写出6之后的下一个完全数    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.