满分5 > 初中数学试题 >

如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4). (1)求抛物线...

如图,对称轴为直线x=manfen5.com 满分网的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?
②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A、B两点坐标代入求解即可. (2)平行四边形的面积为三角形OEA面积的2倍,因此可根据E点的横坐标,用抛物线的解析式求出E点的纵坐标,那么E点纵坐标的绝对值即为△OAE的高,由此可根据三角形的面积公式得出△AOE的面积与x的函数关系式进而可得出S与x的函数关系式. ①将S=24代入S,x的函数关系式中求出x的值,即可得出E点的坐标和OE,OA的长;如果平行四边形OEAF是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF是否为菱形. ②如果四边形OEAF是正方形,那么三角形OEA应该是等腰直角三角形,即E点的坐标为(3,-3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E点. 【解析】 (1)因为抛物线的对称轴是x=, 设解析式为y=a(x-)2+k. 把A,B两点坐标代入上式,得, 解得a=,k=-. 故抛物线解析式为y=(x-)2-,顶点为(,-). (2)∵点E(x,y)在抛物线上,位于第四象限,且坐标适合y=(x-)2-, ∴y<0, 即-y>0,-y表示点E到OA的距离. ∵OA是OEAF的对角线, ∴S=2S△OAE=2××OA•|y|=-6y=-4(x-)2+25. 因为抛物线与x轴的两个交点是(1,0)和(6,0), 所以自变量x的取值范围是1<x<6. ①根据题意,当S=24时,即-4(x-)2+25=24. 化简,得(x-)2=. 解得x1=3,x2=4. 故所求的点E有两个, 分别为E1(3,-4),E2(4,-4), 点E1(3,-4)满足OE=AE, 所以平行四边形OEAF是菱形; 点E2(4,-4)不满足OE=AE, 所以平行四边形OEAF不是菱形; ②当OA⊥EF,且OA=EF时,平行四边形OEAF是正方形, 此时点E的坐标只能是(3,-3), 而坐标为(3,-3)的点不在抛物线上, 故不存在这样的点E,使平行四边形OEAF为正方形.
复制答案
考点分析:
相关试题推荐
某酒厂每天生产A、B两种品牌的白酒共600瓶,A、B两种品牌的白酒每瓶的成本和利润如表:
AB
成本(元/瓶)5035
利润(元/瓶)2015
设每天生产A种品牌白酒x瓶,每天获利y元.
(1)求y关于x的函数关系式;
(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?
查看答案
如图所示,在直角坐标平面内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=manfen5.com 满分网
求:(1)点B的坐标;(2)cos∠BAO的值.

manfen5.com 满分网 查看答案
有三张完全相同的卡片,在正面分别写上manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,把它们背面朝上洗匀后,小丽从中抽取一张,记下这个数后放回洗匀,小明又从中抽出一张.
(1)直接写出小丽抽取的卡片恰好是manfen5.com 满分网的概率;
(2)小刚为他们俩设计了一个游戏规则:若两人抽取的卡片上两数之积是有理数,则小丽获胜,否则小明获胜.你认为这个游戏规则公平吗?若不公平,则对谁有利?请用列表法或画树状图进行分析说明.
查看答案
如图,在△ABC中,∠B=∠C,AD垂直平分EF.
(1)证明:BE=CF;
(2)将条件:“AD垂直平分EF”换成另一个条件,使得结论BE=CF仍成立,请直接写出这个条件.

manfen5.com 满分网 查看答案
记者抽查了市区几所中学的100名学生,调查内容是“你记得父母的生日吗?”根据调查问卷数据,记者画出如图所示的统计图,请你根据图中提供的信息答下列问题:
(1)这次调查,“只记得双亲中一方生日”的学生总共有多少人?
(2)在这次调查的四个小项目中,“众数”是哪一个项目?它所占的百分比是多少?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.