满分5 > 初中数学试题 >

(2006•自贡)在梯形ABCD中,AB∥CD,AD=BC,延长AB到E,使BE...

(2006•自贡)在梯形ABCD中,AB∥CD,AD=BC,延长AB到E,使BE=CD,连接CE.
(1)求证:CE=CA;
(2)在上述条件下,若AF⊥CE于点F,且AF平分∠DAE,CD:AE=3:8,求cos∠ACF的值.

manfen5.com 满分网
(1)证明DBEC为平行四边形,即可证CE=CA. (2)充分利用平行线分线段成比例定理,求得CF:AC即可. (1)证明:∵BE∥CD,BE=CD, ∴四边形DBEC为平行四边形. ∴CE=DB. ∵DB=AC, ∴CE=CA. (2)【解析】 延长EC交AD的延长线于G, ∵CD∥AE ∴=,设GC=3a,则GE=8a,故CE=5a, ∵△AEG为等腰三角形, ∴GF=EF=4a,于是CF=GF-GC=a, 则CA=CE=5a.(7分) ∴cos∠ACF=.
复制答案
考点分析:
相关试题推荐
(2005•常德)如图,⊙O1与⊙O2外切于点P,外公切线AB切⊙O1于点A,切⊙O2于点B,
(1)求证:AP⊥BP;
(2)若⊙O1与⊙O2的半径分别为r和R,求证:manfen5.com 满分网
(3)延长AP交⊙O2于C,连接BC,若r:R=2:3,求tan∠C的值.

manfen5.com 满分网 查看答案
manfen5.com 满分网(2005•眉山)已知:如图,⊙O1与⊙O2外切于M点,AF是两圆的外公切线,A、B是切点,DF经过O1、O2,分别交⊙O1于D、⊙O2于E,AC是⊙O1的直径,BC经过M点,连接AD.
(1)求证:AD∥BC;
(2)求证:MF2=AF•BF;
(3)如果⊙O1的直径长为8,tan∠ACB=manfen5.com 满分网,求⊙O2的直径长.
查看答案
(2005•西宁)如图,已知⊙O与CA、CB相切于点A、B,OA=OB=2manfen5.com 满分网cm,AB=6 cm,求∠ACB的度数.

manfen5.com 满分网 查看答案
(2005•海淀区)如图,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点E、F.
(1)求证:AB是⊙O的切线;
(2)若△ABO腰上的高等于底边的一半,且manfen5.com 满分网,求manfen5.com 满分网的长.

manfen5.com 满分网 查看答案
(2005•荆州)如图i,半圆O为△ABC的外接半圆,AC为直径,D为劣弧manfen5.com 满分网上的一动点,P在CB的延长线上,且有∠BAP=∠BDA.
(1)求证:AP是半圆O的切线;
(2)当其它条件不变时,问添加一个什么条件后,有BD2=BE•BC成立?说明理由;
(3)如图ii,在满足(2)问的前提下,若OD⊥BC与H,BE=2,EC=4,连接PD,请探究四边形ABDO是什么特殊的四边形,并求tan∠DPC的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.