满分5 > 初中数学试题 >

(2005•海淀区)如图,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C...

(2005•海淀区)如图,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点E、F.
(1)求证:AB是⊙O的切线;
(2)若△ABO腰上的高等于底边的一半,且manfen5.com 满分网,求manfen5.com 满分网的长.

manfen5.com 满分网
由OA=OB,AC=BC,即可推出OC⊥AB,即AB是⊙O的切线; 根据三角函数公式及勾股定理求得∠A=30°,OC=2,又因为OA=OB,从而得出∠AOB=120度.由弧长公式可求得的长为. (1)证明:连接OC.(1分) ∵OA=OB,AC=BC, ∴OC⊥AB. ∵C在⊙O上, ∴AB是⊙O的切线.(2分) (2)【解析】 过B点作BD⊥AO,交AO的延长线于D点. 由题意有AB=2BD,. 在Rt△ABD中,根据正弦定义, ∴∠A=30度.(3分) 在Rt△ACO中,,∠A=30°, 则AO=2OC. 由勾股定理,求得OC=2.(4分) ∵OA=OB,且∠A=30°, ∴∠AOB=120度. 由弧长公式可求得的长为.(5分)
复制答案
考点分析:
相关试题推荐
(2005•荆州)如图i,半圆O为△ABC的外接半圆,AC为直径,D为劣弧manfen5.com 满分网上的一动点,P在CB的延长线上,且有∠BAP=∠BDA.
(1)求证:AP是半圆O的切线;
(2)当其它条件不变时,问添加一个什么条件后,有BD2=BE•BC成立?说明理由;
(3)如图ii,在满足(2)问的前提下,若OD⊥BC与H,BE=2,EC=4,连接PD,请探究四边形ABDO是什么特殊的四边形,并求tan∠DPC的值.

manfen5.com 满分网 查看答案
(2005•北京)已知:在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、D、B三点,CB的延长线交⊙O于点E(如图1).
在满足上述条件的情况下,当∠CAB的大小变化时,图形也随着改变(如图2),在这个变化过程中,有些线段总保持着相等的关系.
(1)观察上述图形,连接图2中已标明字母的某两点,得到一条新线段与线段CE相等,请说明理由;
(2)在图2中,过点E作⊙O的切线,交AC的延长线于点F.
①若CF=CD,求sin∠CAB的值;
②若manfen5.com 满分网=n(n>0),试用含n的代数式表示sin∠CAB(直接写出结果).

manfen5.com 满分网 查看答案
(2005•茂名)如图,已知直线L与⊙O相切于点A,直径AB=6,点P在L上移动,连接OP交⊙O于点C,连接BC并延长BC交直线L于点D.
(1)若AP=4,求线段PC的长;
(2)若△PAO与△BAD相似,求∠APO的度数和四边形OADC的面积(答案要求保留根号).

manfen5.com 满分网 查看答案
(2005•四川)已知:如图,以Rt△ABC的斜边AB为直径作⊙O,D是⊙O上的点,且有AC=CD.过点C作⊙O的切线,与BD的延长线交于点E,连接CD.
(1)试判断BE与CE是否互相垂直,请说明理由;
(2)若CD=2manfen5.com 满分网,tan∠DCE=manfen5.com 满分网,求⊙O的半径长.

manfen5.com 满分网 查看答案
(2005•天水)如图,己知⊙Ol与⊙O2外切于点P,A在⊙Ol上,AC切⊙O2于点C,交⊙O1于点B,AP的延长线交⊙O2于点D.
(1)求证:PC平分∠BPD;
(2)求证:PC2=PB•PD;
(3)当⊙O1、⊙O2的半径分别为2cm、3cm时,sin∠BAP的值是多少?当⊙O1、⊙O2的半径分别为4cm、6cm时,sin∠BAP的值是多少?分析sin∠BAP值的变化,你能发现什么规律?请尝试证明或否定你的猜想.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.