满分5 > 初中数学试题 >

(2005•南宁)如图,点P是圆上的一个动点,弦AB=.PC是∠APB的平分线,...

(2005•南宁)如图,点P是圆上的一个动点,弦AB=manfen5.com 满分网.PC是∠APB的平分线,∠BAC=30°.
(1)当∠PAC等于多少度时,四边形PACB有最大面积,最大面积是多少?
(2)当∠PAC等于多少度时,四边形PACB是梯形,说明你的理由.

manfen5.com 满分网
(1)由PC是∠APB的平分线,可知=,根据直径所对的圆周角是直角,根据特殊角的三角函数值求出PC的值,即可求出四边形PACB的面积. (2)当∠PAC=120°时,根据PC是∠APB的平分线,求出∠PAC与∠APB互补,即AC∥PB且AP与BC不平行,四边形PACB是梯形; 当∠PAC=60°时,由=可知,AC=BC,又因为∠BAC=30°,所以∠ACB=120°,∠PAC与∠ACB互补,故BC∥AP且AC与PB不平行,四边形PACB是梯形. 【解析】 (1)∵PC是∠APB的平分线, ∴=.(1分) 当PC是圆的直径,即∠PAC=90°时,四边形PACB面积最大.(3分) 在Rt△PAC中,∠APC=30°,AP=PB=AB=, ∴PC==•=2.(4分) ∴S四边形PACB=2S△ACP(5分) =PC•AB=×2× =.(6分) (2)当∠PAC=120°时,四边形PACB是梯形.(7分) ∵PC是∠APB的平分线, ∴∠APC=∠BPC=∠CAB=30°. ∴∠APB=60°. ∴∠PAC+∠APB=180°. ∴AC∥PB且AP与BC不平行. ∴四边形PACB是梯形.(8分) 当∠PAC=60°时,四边形PACB是梯形.(9分) ∵=, ∴AC=BC. 又∵∠BAC=30°, ∴∠ACB=120°. ∴∠PAC+∠ACB=180°. ∴BC∥AP且AC与PB不平行. ∴四边形PACB是梯形.(10分)
复制答案
考点分析:
相关试题推荐
(2007•开封)已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP.
(1)求证:△CPB≌△AEB;
(2)求证:PB⊥BE;
(3)若PA:PB=1:2,∠APB=135°,求cos∠PAE的值.

manfen5.com 满分网 查看答案
(2005•重庆)已知四边形ABCD中,P是对角线BD上的一点,过P作MN∥AD,EF∥CD,分别交AB、CD、AD、BC于点M、N、E、F,设a=PM•PE,b=PN•PF,解答下列问题:
(1)当四边形ABCD是矩形时,见图1,请判断a与b的大小关系,并说明理由;
(2)当四边形ABCD是平行四边形,且∠A为锐角时,见图2,(1)中的结论是否成立?并说明理由;
(3)在(2)的条件下,设manfen5.com 满分网,是否存在这样的实数k,使得manfen5.com 满分网?若存在,请求出满足条件的所有k的值;若不存在,请说明理由.
manfen5.com 满分网
查看答案
(2005•天津)在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.
(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).
manfen5.com 满分网
(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.
manfen5.com 满分网
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.
查看答案
(2005•衢州)已知,△ABC中,∠B=90°,∠BAD=∠ACB,AB=2,BD=1,过点D作DM⊥AD交AC于点M,DM的延长线与过点C的垂线交于点P.
(1)求sin∠ACB的值;
(2)求MC的长;
(3)若点Q以每秒1个单位的速度由点C向点P运动,是否存在某一时刻t,使四边形ADQP的面积等于四边形ABCQ的面积;若存在,求出t的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2005•镇江)已知:如图,四边形ABCD中,∠C=90°,∠ABD=∠CBD,AB=CB,P是BD上一点,PE⊥BC,PF⊥CD,垂足分别为E、F.
(1)求证:PA=EF;
(2)若BD=10,P是BD的中点,sin∠BAP=manfen5.com 满分网,求四边形PECF的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.