满分5 > 初中数学试题 >

(2005•吉林)如图,矩形ABCD的长与宽分别是2cm和1cm,AB在直线L上...

(2005•吉林)如图,矩形ABCD的长与宽分别是2cm和1cm,AB在直线L上.依次以B,C′,D″为中心将矩形ABCD按顺时针方向旋转90°,这样点A走过的曲线依次为manfen5.com 满分网,其中manfen5.com 满分网交CD于点P.
(1)求矩形A′BC′D′的对角线A′C′的长;
(2)求manfen5.com 满分网的长;
(3)求图中manfen5.com 满分网部分的面积.
(4)求图中manfen5.com 满分网部分的面积.

manfen5.com 满分网
(1)由于旋转得到的两个图形全等,求出矩形ABCD的对角线就是矩形A′BC′D′的对角线,利用勾股定理求解即可; (2)直接利用弧长公式计算就可以了,圆心角是90°; (3)连接A″C′,就会得到一个以半径A′C′的扇形,利用面积割补,可看出阴影部分面积就等于扇形面积. (4)连接BP,利用所给的矩形的边长,可得∠CPB的正弦值,故可求∠CPB,再利用平行可得到∠APB的度数,而阴影面积就等于扇形ABP与Rt△BPC的面积之和.因此可求得所求的面积. 【解析】 (1)由旋转得A′C′=AC==(cm). (2)的长为=π(cm). (3)由旋转的性质,△A′D′C′≌△A″D″C′, 故所求的面积S=S扇形C′A′A′′==π×()2=π(cm2). (4)连接BP,在Rt△BCP中,BC=1,BP=BA=2. ∴∠BPC=30°,CP=, ∴∠ABP=30°, ∴T=S扇形ABP+S△PBC=+×1×=+(cm2).
复制答案
考点分析:
相关试题推荐
(2005•三明)如图,在半径是2的⊙O中,点Q为优弧MN的中点,圆心角∠MON=60°,在NQ上有一动点P,且点P到弦MN的距离为x.
(1)求弦MN的长;
(2)试求阴影部分面积y与x的函数关系式,并写出自变量x的取值范围;
(3)试分析比较,当自变量x为何值时,阴影部分面积y与S扇形OMN的大小关系.

manfen5.com 满分网 查看答案
(2005•沈阳)某工厂中有若干个形状完全相同的直角三角形铁片余料,(如图),已知∠ACB=90°,AC=3,BC=4,现准备对两块铁片余料进行裁剪,方案如下:
方案一:如图1,裁出一个扇形,圆心为点C,并且与AB相切于点D.
方案二:如图2,裁出一个半圆,圆心O在BC上,并且与AB、AC相切于点D、C;
manfen5.com 满分网
(1)分别计算以上两种方案裁剪下来的图形的面积,并把计算结果直接填在横线上.按照方案一裁出的扇形面积是______;按照方案二裁出的半圆的面积是______
(2)写出按照方案二裁出的半圆面积的计算过程.
查看答案
(2005•无锡)已知,点P是正方形ABCD内的一点,连PA、PB、PC.
(1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1).
①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积;
②若PA=2,PB=4,∠APB=135°,求PC的长;
(2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.

manfen5.com 满分网 查看答案
(2005•淮安)如图,在平面直角坐标系中,∠AOB=60°,点B坐标为(2,0),线段OA的长为6.将△AOB绕点O逆时针旋转60°后,点A落在点C处,点B落在点D处.
(1)请在图中画出△COD;
(2)求点A旋转过程中所经过的路程(精确到0.1);
(3)求直线BC的解析式.

manfen5.com 满分网 查看答案
(2005•宁德)如图,在一个横截面为Rt△ABC的物体中,∠CAB=30°,BC=1米.工人师傅把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1B1C1的位置(BC1在l上),最后沿BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边).
(1)请直接写出AB、AC的长;
(2)画出在搬动此物的整个过程A点所经过的路径,并求出该路径的长度(精确到0.1米).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.