满分5 > 初中数学试题 >

(2005•枣庄)如图,⊙O1和⊙O2外切于点P,直线AB是两圆的外公切线,A,...

(2005•枣庄)如图,⊙O1和⊙O2外切于点P,直线AB是两圆的外公切线,A,B为切点,试判断以线段AB为直径的圆与直线O1O2的位置关系,并说明理由.

manfen5.com 满分网
先找到以线段AB为直径的圆的圆心M点.根据切线长定理,知即为过P作圆O1,圆O2的公切线PM,交AB于M点;再根据公切线和切线长定理,可知直线O1O2与以线段AB为直径的圆相切. 【解析】 直线O1O2与以线段AB为直径的圆相切.理由如下: 过P作圆O1,圆O2的公切线PM,交AB于M点, 则AM=MB=MP,O1O2⊥MP. ∴M点为以线段AB为直径的圆的圆心,且点P在圆M上. ∵圆O1和圆O2外切于点P, ∴直线O1O2过点P, ∴直线O1O2与以线段AB为直径的圆相切.
复制答案
考点分析:
相关试题推荐
(2005•兰州)如图,在内切的两圆中,设C为小圆的圆心,O为大圆的圆心,P为切点,⊙O的弦PQ和⊙C相交于R,过点R作⊙C的切线与⊙O交于A、B两点,求证:Q是弧AB的中点.

manfen5.com 满分网 查看答案
(2005•武汉)如图,已知:⊙O1、⊙O2外切于点P,A是⊙O1上一点,直线AC切⊙O2于点C交⊙O1于点B,直线AP交⊙O2于点D.
(1)求证:PC平分∠BPD;
(2)将“⊙O1、⊙O2外切于点P”改为“⊙O1、⊙O2内切于点P”,其它条件不变.(1)中的结论是否仍然成立?画出图形并证明你的结论.
manfen5.com 满分网
查看答案
(2005•包头)如图1,圆O1与圆O2都经过A、B两点,经过点A的直线CD与圆O1交于点C,与圆O2交于点D.经过点B的直线EF与圆O1交于点E,与圆O2交于点F.
manfen5.com 满分网
(1)求证:CE∥DF;
(2)在图1中,若CD和EF可以分别绕点A和点B转动,当点C与点E重合时(如图2),过点E作直线MN∥DF,试判断直线MN与圆O1的位置关系,并证明你的结论.
查看答案
(2005•黄冈)宏远广告公司要为某企业的一种产品设计商标图案,给出了如下几种初步方案,供继续设计选用(设图中圆的半径均为r)
(1)如图1,分别以线段O1O2的两个端点为圆心,以这条线段的长为半径作出两个互相交错的圆的图案,试求两圆相交部分的面积;
(2)如图2,分别以等边△O1O2O3的三个顶点为圆心,以其边长为半径,作出三个两两相交的相同的圆,这时,这三个圆相交部分的面积又是多少呢?
(3)如图3,分别以正方形O1O2O3O4的四个顶点为圆心,以其边长为半径,作出四个相同的圆,这时,这四个圆相交部分的面积又是多少呢?
manfen5.com 满分网
查看答案
(2005•辽宁)如图,⊙C经过坐标原点O,分别交x轴正半轴、y轴正半轴于点B、A,点B的坐标为(4manfen5.com 满分网,0),点M在⊙C上,并且∠BMO=120度.
(1)求直线AB的解析式;
(2)若点P是⊙C上的点,过点P作⊙C的切线PN,若∠NPB=30°,求点P的坐标;
(3)若点D是⊙C上任意一点,以B为圆心,BD为半径作⊙B,并且BD的长为正整数.
①问这样的圆有几个?它们与⊙C有怎样的位置关系?
②在这些圆中,是否存在与⊙C所交的弧(指⊙B上的一条弧)为90°的弧,若存在,请给出证明;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.