满分5 > 初中数学试题 >

(2005•扬州)如图1,AB是⊙O的直径,射线BM⊥AB,垂足为B,点C为射线...

(2005•扬州)如图1,AB是⊙O的直径,射线BM⊥AB,垂足为B,点C为射线BM上的一个动点(C与B不重合),连接AC交⊙O于D,过点D作⊙O的切线交BC于E.
(1)在C点运动过程中,当DE∥AB时(如图2),求∠ACB的度数;
(2)在C点运动过程中,试比较线段CE与BE的大小,并说明理由;
(3)∠ACB在什么范围内变化时,线段DC上存在点G,满足条件BC2=4DG•DC(请写出推理过程).
manfen5.com 满分网
(1)连接圆心和切点,可得到∠ODE=90°,那么可得∠AOD=90°,所以∠A=45°,进而可求得∠ACB的度数; (2)证CE、DE是否相等,即求∠ECD和∠EDC是否相等;连接BD,由切线长定理知△EDB是等腰三角形,即∠EDB=∠EBD;在Rt△CDB中,可发现∠ECD和∠EDC是等角的余角,由此得证; (3)由(2)的结论易知:DE是Rt△CDB斜边上的中线,即BC=2DE,将此关系式代入所求证的结论中,可得DE2=DG•DC;由此可证得△DEG∽△DCE,即∠DEG=∠ACB;进而可根据∠DGE和∠ACB的大小关系以及三角形内角和定理,求出∠ACB的取值范围. 【解析】 (1)如图2:当DE∥AB时,连接OD, ∵DE是⊙O的切线, ∴OD⊥DE, ∵DE∥AB, ∴OD⊥AB; 又∵OD=OA, ∴∠A=45°, 又∵BM⊥AB, ∴∠OBE=90°, ∴在Rt△ABC中,∠ACB=45°; 即:当∠ACB=45°时,DE∥AB; (本问证明的方法比较多,对于其它方法,只要是正确的,请参照给分) (2)如图1,连接BD, ∵AB是⊙O的直径, ∴∠BDA=∠BDC=90°, ∴∠ACB+∠CBD=90°, ∠EDB+∠CDE=90°; 又∵BM⊥AB,AB是⊙O的直径, ∴MB是⊙O的切线, 又∵DE是⊙O的切线, ∴∠CBD=∠EDB, ∴∠ACB=∠CDE, ∴EC=ED, ∴BE=EC; (3)假设在线段CD上存在点G,使BC2=4DG•DC, 由(2)知:BE=CE, ∴BC=2CE=2DE, ∴(2DE)2=4 DG•DC,从而DE2=DG•DC; 由于∠CDE是公共角, ∴△DEG∽△DCE, ∴∠ACB=∠DEG; 令∠ACB=x,∠DGE=y, ∴∠CDE=∠ACB=x, ∵C和B不重合, ∴BC>0, ∴D和G就不能够重合,但是,G可以和C重合, ∴要使线段CD上的G点存在,则要满足:2x+y=180°且y≥x,因此x≤60°, ∴0°<∠ACB≤60°时,满足条件的G点存在.
复制答案
考点分析:
相关试题推荐
(2005•宜宾)如图1,等腰直角三角形ABC的腰长是2,∠ABC=90度.以AB为直径作半圆O,M是BC上一动点(不运动至B、C两点),过点M引半圆为O的切线,切点是P,过点A作AB的垂线AN,交切线MP于点N,AC与ON、MN分别交于点E、F.
(1)证明:△MON是直角三角形;
(2)当BM=manfen5.com 满分网时,求manfen5.com 满分网的值(结果不取近似值);
(3)当BM=manfen5.com 满分网时(图2),判断△AEO与△CMF是否相似?如果相似,请证明;如果不相似,请说明理由.
manfen5.com 满分网
查看答案
(2005•玉林)如图(1),AB是⊙O的直径,射线AT⊥AB,点P是射线AT上的一个动点(P与A不重合),PC与⊙O相切于C,过C作CE⊥AB于E,连接BC并延长BC交AT于点D,连接PB交CE于F.
(1)请你写出PA、PD之间的关系式,并说明理由;
(2)请你找出图中有哪些三角形的面积被PB分成两等分,并加以证明;
(3)设过A、C、D三点的圆的半径是R,当CF=manfen5.com 满分网R时,求∠APC的度数,并在图(2)中作出点P.(要求尺规作图,不写作法,但要保留作图痕迹)
manfen5.com 满分网
查看答案
(2005•漳州)已知:如图,直线EF与⊙O相切于点C,AB是⊙O的直径,且BC=3,Ac=4.
(1)求半径OC的长;
(2)在切线EF上找一点M,使得以B、M、C为顶点的三角形与△ACO相似.

manfen5.com 满分网 查看答案
(2005•金华)如图,在矩形ABCD中,AD=8,点E是AB边上的一点,AE=2manfen5.com 满分网.过D,E两点作直线PQ,与BC边所在的直线MN相交于点F.
(1)求tan∠ADE的值;
(2)点G是线段AD上的一个动点,GH⊥DE,垂足为H.设DG为x,四边形AEHG的面积为y,试写出y与x之间的函数关系式;
(3)如果AE=2EB,点O是直线MN上的一个动点,以O为圆心作圆,使⊙O与直线PQ相切,同时又与矩形ABCD的某一边相切.问满足条件的⊙O有几个?并求出其中一个圆的半径.
manfen5.com 满分网
查看答案
(2005•梅州)如图,Rt△ABC中,∠ACB=90°,AC=4,BA=5.P是AC上的动点(P不与A、C重合),设PC=x,点P到AB的距离为y.
(1)求y与x的函数关系式;
(2)试讨论以P为圆心,半径长为x的圆与AB所在直线的位置关系,并指出相应的x的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.