满分5 > 初中数学试题 >

(2005•深圳)AB是⊙O的直径,点E是半圆上一动点(点E与点A、B都不重合)...

(2005•深圳)AB是⊙O的直径,点E是半圆上一动点(点E与点A、B都不重合),点C是BE延长线上的一点,且CD⊥AB,垂足为D,CD与AE交于点H,点H与点A不重合.
(1)求证:△AHD∽△CBD;
(2)连HO,若CD=AB=2,求HD+HO的值.

manfen5.com 满分网
(1)要证△AHD∽△CBD,只要证明这两个三角形的两组对边的比相等,就可以证出; (2)①设OD=x,则BD=1-x,AD=1+x,由Rt△AHD∽Rt△CBD可用x表示出DH的值,在Rt△HOD中利用勾股定理可用x表示出OH的值,进而可得出结论; ②当点E移动到使D与O重合的位置时,这时HD与HO重合,由Rt△AHO∽Rt△CBO,利用对应边的比例式为方程,可以算出HD=HO=,即HD+HO=1; ③当D在OA段时BD=1+x,AD=1-x,证明同①. (1)证明:AB是⊙O的直径 ∴∠AEB=90°,则∠ABC+∠BAE=90°, 又∵CD⊥AB, ∴∠BAE+∠AHD=90°, ∴∠AHD=∠ABC, 又∵∠ADH=∠CDB=90°, ∴△AHD∽△CBD. (2)【解析】 设OD=x,则BD=1-x,AD=1+x, ∵Rt△AHD∽Rt△CBD, 则HD:BD=AD:CD, 即HD:(1-x)=(1+x):2, 即HD=, 在Rt△HOD中,由勾股定理得: OH==, 所以HD+HO=+=1; ②当点E移动到使D与O重合的位置时,这时HD与HO重合,由Rt△AHO∽Rt△CBO,利用对应边的比例式为方程,可以算出HD=HO=,即HD+HO=1; ③当D在OA段时BD=1+x,AD=1-x,证明同①∵Rt△AHD∽Rt△CBD, 则HD:BD=AD:CD, 即HD:(1-x)=(1+x):2, 即HD=, 在Rt△HOD中,由勾股定理得: OH==, 所以HD+HO=+=1.
复制答案
考点分析:
相关试题推荐
(2005•温州)如图,已知四边形ABCD内接于⊙O,A是manfen5.com 满分网的中点,AE⊥AC于A,与⊙O及CB的延长线分别交于点F、E,且manfen5.com 满分网,EM切⊙O于M.
(1)求证:△ADC∽△EBA;
(2)求证:AC2=manfen5.com 满分网BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

manfen5.com 满分网 查看答案
(2005•连云港)如图,△ABC是等边三角形,⊙O过点B,C,且与BA,CA的延长线分别交于点D,E,弦DF∥AC,EF的延长线交BC的延长线于点G.
(1)求证:△BEF是等边三角形;
(2)若BA=4,CG=2,求BF的长.

manfen5.com 满分网 查看答案
(2005•湘潭)如图,已知manfen5.com 满分网=manfen5.com 满分网,∠APC=60度.
(1)求证:△ABC是等边三角形;
(2)若BC=4cm,求⊙O的面积.

manfen5.com 满分网 查看答案
(2005•泸州)如图,在⊙O中,弦AB与DC相交于E,且AE=EC,求证:AD=BC.

manfen5.com 满分网 查看答案
(2005•长沙)已知抛物线y=ax2+bx-1经过点A(-1,0)、B(m,0)(m>0),且与y轴交于点C.
(1)求a、b的值(用含m的式子表示);
(2)如图所示,⊙M过A、B、C三点,求阴影部分扇形的面积S(用含m的式子表示);
(3)在x轴上方,若抛物线上存在点P,使得以A、B、P为顶点的三角形与△ABC相似,求m的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.