满分5 > 初中数学试题 >

(2005•漳州)如图1,在直角梯形ABCD中,AD∥BC,顶点D,C分别在AM...

(2005•漳州)如图1,在直角梯形ABCD中,AD∥BC,顶点D,C分别在AM,BN上运动(点D不与A重合,点C不与B重合),E是AB上的动点(点E不与A,B重合),在运动过程中始终保持DE⊥CE,且AD+DE=AB=a.
(1)求证:△ADE∽△BEC;
(2)当点E为AB边的中点时(如图2),求证:①AD+BC=CD;②DE,CE分别平分∠ADC,∠BCD;
(3)设AE=m,请探究:△BEC的周长是否与m值有关,若有关请用含m的代数式表示△BEC的周长;若无关请说明理由.
manfen5.com 满分网
(1)∠A=∠D=90°,然后利用∠DEC=90°得到∠AED=∠ECB,这样就可以证明△ADE∽△BEC; (2)过点E作梯形两底的平行线交腰CD于F,则F是CD的中点,然后利用梯形的中位线就可以证明①和②; (3)主要利用(1)中的相似三角形带来的比例线段和勾股定理解题. (1)证明:∵梯形ABCD是直角梯形 ∴∠A=∠B=90° 又∵∠DEC=90° ∴∠AED+∠BEC=90° ∵∠BEC+∠BCE=90° ∴∠AED=∠BCE ∴△ADE∽△BEC (2)证明:过点E作EF∥AD,交CD于F,则EF既是梯形ABCD的中位线,又是Rt△DEC斜边上的中线. ∵AD+BC=2EF,CD=2EF ∴AD+BC=CD ∵FD=FE=CD ∴∠FDE=∠FED ∵EF∥AD ∴∠ADE=∠FED ∴∠FDE=∠ADE,即DE平分∠ADC 同理可证:CE平分∠BCD (3)【解析】 设AD=x,由已知AD+DE=AB=a得DE=a-x,又AE=m 在Rt△AED中,由勾股定理得:x2+m2=(a-x)2,化简整理得:a2-m2=2ax① 在△EBC中,由AE=m,AB=a,得BE=a-m 因为△ADE∽△BEC,所以, 即:, 解得: 所以△BEC的周长=BE+BC+EC= == =② 把①式代入②,得△BEC的周长=BE+BC+EC= 所以△BEC的周长与m无关.
复制答案
考点分析:
相关试题推荐
(2008•旅顺口区)如图,在4×3的正方形方格中,△ABC和△DEC的顶点都在边长为1的小正方形的顶点上.
(1)填空:∠ABC=______°,BC=______

manfen5.com 满分网 查看答案
(2006•自贡)在梯形ABCD中,AB∥CD,AD=BC,延长AB到E,使BE=CD,连接CE.
(1)求证:CE=CA;
(2)在上述条件下,若AF⊥CE于点F,且AF平分∠DAE,CD:AE=3:8,求cos∠ACF的值.

manfen5.com 满分网 查看答案
(2005•扬州)若一个矩形的短边与长边的比值为manfen5.com 满分网(黄金分割数),我们把这样的矩形叫做黄金矩形.
(1)操作:请你在如图所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD;
(2)探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由;
(3)归纳:通过上述操作及探究,请概括出具有一般性的结论(不需要证明).

manfen5.com 满分网 查看答案
(2005•泰安)已知,△ABC是等边三角形,将一块含30°角的直角三角板DEF如图放置,让三角板在BC所在的直线l上向右平移.当点E与点B重合时,点A恰好落在三角板的斜边DF上.
问:在三角板平移过程中,图中是否存在与线段EB始终相等的线段(假定AB、AC与三角板斜边的交点为G、H)?如果存在,请指出这条线段,并证明;如果不存在,请说明理由.
(说明:结论中不得含有图中未标识的字母)

manfen5.com 满分网 查看答案
(2005•福州)已知,如图,在直角梯形ABCD中,AD∥BC,BC=5cm,CD=6cm,∠DCB=60°,∠ABC=90度.等边三角形MPN(N为不动点)的边长为acm,边MN和直角梯形ABCD的底边BC都在直线l上,NC=8cm.将直角梯形ABCD向左翻折180°,翻折一次得图形①,翻折二次得图形②,如此翻折下去.
(1)将直角梯形ABCD向左翻折二次,如果此时等边三角形的边长a≥2cm,这时两图形重叠部分的面积是多少?
(2)将直角梯形ABCD向左翻折三次,如果第三次翻折得到的直角梯形与等边三角形重叠部分的面积等于直角梯形ABCD的面积,这时等边三角形的边长a至少应为多少?
(3)将直角梯形ABCD向左翻折三次,如果第三次翻折得到的直角梯形与等边三角形重叠部分的面积等于直角梯形ABCD的面积的一半,这时等边三角形的边长应为多少?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.