满分5 > 初中数学试题 >

(2005•济南)如图(1),已知圆O是等边△ABC的外接圆,过O点作MN∥BC...

(2005•济南)如图(1),已知圆O是等边△ABC的外接圆,过O点作MN∥BC分别交AB、AC于M、N,且MN=a.另一个与△ABC全等的等边△DEF的顶点D在MN上移动(不与点M、N重合),并始终保持EF∥BC,DF交AB于点P,DE交AC于点Q.
(1)试判断四边形APDQ的形状,并进行证明;
(2)设DM为x,四边形APDQ的面积为y,试探究y与x的函数关系式;四边形APDQ的面积能取到最大值吗?如果能,请求出它的最大值,并确定此时D点的位置.
(3)如图(2),当D点和圆心O重合时,请判断四边形APDQ的形状,并说明理由;你能发现四边形APDQ的面积与△ABC的面积有何关系吗?为什么?

manfen5.com 满分网
(1)应该是平行四边形,已知∠BAC=∠FOE=60°,那么证明∠BPD=∠CQD=60°就是关键,可根据FE∥MN∥BC,用内错角相等,得出∠AMN=∠MDP=∠ANM=∠EDN=60°,那么可根据三角形的内角和得出∠DPM=∠DQN=60°,由此可得出四边形APDQ的两组对边都平行,也就得出是平行四边形的结论. (2)要求四边形的面积,就要知道一边和这边上的高分别是多少,告诉了DM=x,那么DN=a-x,根据(1)不难得出三角形MDP和DQN都是等边三角形,那么DP=x,DP边上的高可以用DN•sin60°来表示,那么可根据平行四边形的面积公式求出y与x的函数关系式.然后可根据函数的性质得出面积的最大值和D的位置. (3)应该是菱形,如果D,O重合,那么OM=ON,那么两个等边三角形MDP和DQN就应该全等,那么OP=OQ,因此平行四边形APOQ应该是菱形,有三角形ABC的边长又知道它是等边三角形,那么它的面积就不难求出,(2)中已经得出了平行四边形APOQ的面积,那么可以通过比较得出他们的关系. 【解析】 (1)可知四边形APDQ为平行四边形 证明:由题知△ABC≌△DEF且△ABC △DEF为等边三角形 ∴∠BAC=∠EDF=60° 又∵EF∥BC,MN∥BC ∴EF∥BC∥MN ∴∠MDF=∠DFE=60°,∠FED=∠EDN=60° ∠MNA=∠BCA=60°,∠QDN=∠QND=60° ∴△DQN为等边三角形 ∴∠DQN=∠PDQ=60°, ∴PD∥AQ ∴∠BAC=∠DQN=60°, ∴AP∥DQ ∴四边形APDQ为平行四边形. (2)y=x(a-x)=-x2+ax=-(x-)2+a2 ∴当x取时,即D点位于MN的中点位置时,四边形APDQ的面积最大,且最大值为a2. (3)当D点和圆心O重合时,四边形APDQ为菱形, 理由:由(1)、(2)可知,△MPO,△QON为等边三角形,且MO=ON, 所以△MPQ≌△QON. 因此OP=OQ,又因为四边形APDQ为平行四边形. 所以可知四边形APDQ为菱形, 由题可知,S△ABC=a2,而由(2)知S四边形APDQ=a2 ∴, ∴S四边形APDQ=S△ABC.
复制答案
考点分析:
相关试题推荐
(2005•兰州)已知二次函数y=ax2-4a图象的顶点坐标为(0,4)矩形ABCD在抛物线与x轴围成的图形内,顶点B、C在x轴上,顶点A、D在抛物线上,且A在D点的右侧,
(1)求二次函数的解析式______
(2)设点A的坐标为(x,y),试求矩形ABCD的周长L与自变量x的函数关系;
(3)周长为10的矩形ABCD是否存在?若存在,请求出顶点A的坐标;若不存在,请说明理由.
查看答案
(2005•绵阳)如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒1cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD.
(1)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;
(2)当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动.过Q作直线QN,使QN∥PM.设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD所得图形的面积为Scm2
①求S关于t的函数关系式;
②(附加题)求S的最大值.

manfen5.com 满分网 查看答案
manfen5.com 满分网(2005•盐城)已知:在矩形ABCD中,AB=2,E为BC边上的一点,沿直线DE将矩形折叠,使C点落在AB边上的C点处.过C′作C′H⊥DC,C′H分别交DE、DC于点G、H,连接CG、CC′,CC′交GE于点F.
(1)求证:四边形CGC′E为菱形;
(2)设sin∠CDE=x,并设y=manfen5.com 满分网,试将y表示成x的函数;
(3)当(2)中所求得的函数的图象达到最高点时,求BC的长.
查看答案
(2005•枣庄)如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.
(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;
(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?

manfen5.com 满分网 查看答案
(2005•青岛)如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C出发,沿CB向点B移动,设P、Q两点移动t秒(0<t<5)后,四边形ABQP的面积为S米2
(1)求面积S与时间t的关系式;
(2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.