满分5 > 初中数学试题 >

(2005•茂名)如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边...

(2005•茂名)如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF分别交于P、Q,
(1)若AB=6,求线段BP的长;
(2)观察图形,是否有三角形与△ACQ全等?并证明你的结论.
manfen5.com 满分网
(1)可通过证△ABP∽△ADE,得出关于线段BP的比例关系,然后根据已知条件去求BP的值 (2)根据菱形的性质及全等三角形的判定方法进行分析,从而不难得到答案. 【解析】 (1)∵菱形ABGH、BCFG、CDEF是全等菱形 ∴BC=CD=DE=AB=6,BG∥DE ∴AD=3AB=3×6=18,∠ABG=∠D,∠APB=∠AED ∴△ABP∽△ADE ∴ ∴BP=•DE=×6=2; (2)图中的△EGP与△ACQ全等 证明: ∵菱形ABGH、BCFG、CDEF是全等的菱形 ∴AB=BC=EF=FG ∴AB+BC=EF+FG ∴AC=EG ∵AD∥HE ∴∠1=∠2 ∵BG∥CF ∴∠3=∠4 ∴△EGP≌△ACQ.
复制答案
考点分析:
相关试题推荐
(2005•南通)如图,矩形ABCD的对角线AC、BD相交于点O,E、F分别是OA、OB的中点.
(1)求证:△ADE≌△BCF;
(2)若AD=4cm,AB=8cm,求CF的长.

manfen5.com 满分网 查看答案
(2005•青岛)操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况.
研究:
(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明;
(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由;
(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明.
manfen5.com 满分网
查看答案
(2005•四川)如图,△ABC内接于⊙O,直径CD⊥AB,垂足为E,弦BF交CD于点M,交AC于点N,且BF=AC,连接AD、AMmanfen5.com 满分网
求证:(1)△ACM≌△BCM;
(2)AD•BE=DE•BC;
(3)BM2=MN•MF.
查看答案
(2005•苏州)(1)如图1所示,在等边△ABC中,点D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE,求证:AE∥BC;
(2)如图2所示,将(1)中等边△ABC的形状改成以BC为底边的等腰三角形,所作△EDC相似于△ABC,请问仍有AE∥BC?证明你的结论.

manfen5.com 满分网 查看答案
(2005•威海)如图,AF⊥CE,垂足为点O,AO=CO=2,EO=FO=1.
(1)求证:点F为BC的中点;
(2)求四边形BEOF的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.