满分5 > 初中数学试题 >

(2005•黄石)已知:⊙O1与⊙O2相交于A、B两点,⊙O1的切线AC交⊙O2...

(2005•黄石)已知:⊙O1与⊙O2相交于A、B两点,⊙O1的切线AC交⊙O2于点C.直线EF过点B交⊙O1于点E,交⊙O2于点F.manfen5.com 满分网
(1)若直线EF交弦AC于点K时(如图1).求证:AE∥CF;
(2)若直线EF交弦AC的延长线于点时(如图2).求证:DA•DF=DC•DE;
(3)若直线EF交弦AC的反向延长线于点(在图3自作),试判断(1)、(2)中的结论是否成立并证明你的正确判断.
(1)连接AB.根据弦切角定理和圆周角定理的推论,可以证明∠E=∠1=∠F,即可证明结论; (2)根据弦切角定理、圆内接四边形的性质,证明平行线,再根据相似三角形的判定和性质求解; (3)正确画出图形后,显然只需构造弦切角所夹的弧所对的圆周角,再结合圆周角定理的推论,即可证明平行,再根据相似三角形的判定和性质,即可证明. (1)证明:连接AB. ∵AC是⊙O1的切线, ∴∠E=∠1, 又∵∠F=∠1. ∴∠E=∠F. ∴AE∥CF. (2)证明:连接AB. ∵AC是⊙O1的切线, ∴∠E=∠1, 又∵A、B、F、C在⊙O2上, ∴∠2=∠1. ∴∠E=∠2, 又∠D=∠D, ∴△ADE∽△CDF. ∴, ∴DA•DF=DC•DE. (3)【解析】 (1)(2)中的结论都成立. 证明:如图3. ∵∠C=∠B=∠DAE, ∴AE∥CF. 又∠D=∠D, ∴△ADE∽△CDF. ∴, ∴DA•DF=DC•DE.
复制答案
考点分析:
相关试题推荐
(2005•湘潭)如图,在直角梯形ABCD中,AB∥DC,∠B=90°,P为BC上一点.
(1)若∠APD=90°,找出图中两个相似的三角形,并加以证明;
(2)若AB=9,DC=4,P为BC的中点,∠APD=90°,求BC的长;
(3)在(2)的条件下,试探求以AD为直径的圆与BC所在直线的位置关系,并予以证明.

manfen5.com 满分网 查看答案
(2005•陕西)已知:如图,AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.
求证:(1)BC平分∠PBD;
(2)BC2=AB•BD.

manfen5.com 满分网 查看答案
(2005•遂宁)如图,在梯形ABCD中,AD∥BC,BD=DC,∠A=100°,∠ABD=40°,求∠BDC的度数.

manfen5.com 满分网 查看答案
(2005•潍坊)(A题)某市经济开发区建有B、C、D三个食品加工厂,这三个工厂和开发区A处的自来水厂正好在一个矩形的四个顶点上,它们之间有公路相通,且AB=CD=900米,AD=BC=1700米.自来水公司已经修好一条自来水主管道AN,BC两厂之间的公路与自来水管道交于E处,EC=500米.若自来水主管道到各工厂的自来水管道由各厂负担,每米造价800元.
(1)要使修建自来水管道的造价最低,这三个工厂的自来水管道路线应怎样设计并在图形中画出;
(2)求出各厂所修建的自来水管道的最低的造价各是多少元?

(B题)如图,已知平行四边形ABCD及四边形外一直线l,四个顶点A、B、C、D到直线l的距离分别为a、b、c、d.
(1)观察图形,猜想得出a、b、c、d满足怎样的关系式?证明你的结论.
(2)现将l向上平移,你得到的结论还一定成立吗?请分情况写出你的结论.manfen5.com 满分网
查看答案
(2005•大连)如图,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
说明:证明过程中要写出每步的证明依据.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.