满分5 > 初中数学试题 >

(2007•台州)善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更...

(2007•台州)善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x(单位:分钟)与学习收益量y的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.
(1)求小迪解题的学习收益量y与用于解题的时间x之间的函数关系式;
(2)求小迪回顾反思的学习收益量y与用于回顾反思的时间x的函数关系式;
(3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最
manfen5.com 满分网大?
(1)由图设抛物线的公式为y=kx即可依题意求出y与x的函数关系式. (2)本题涉及分段函数的知识.需要注意的是x的取值范围依照分段函数的解法解出即可. (3)设小迪用于回顾反思的时间为x(0≤x≤10)分钟,学习收益总量为y,则她用于解题的时间为(20-x)分钟.用配方法的知识解答该题即可. 【解析】 (1)由图1,设y=kx(k≠0).当x=1时,y=2, 解得k=2 ∴y=2x(0≤x≤20) (2)中的收益量y与反思时间x的函数关系必须分段: 由图2,当0≤x<4时,设y=a(x-4)2+16(a≠0), 由已知,当x=0时,y=0 ∴0=16a+16, ∴a=-1 ∴y=-(x-4)2+16即y=-x2+8x 当4≤x≤10时,y=16. 因此,当0≤x<4时,y=-(x-4)2+16; 当4≤x≤10时,y=16. (3)设小迪用于回顾反思的时间为x(0≤x≤10)分钟,学习收益总量为y, 则她用于解题的时间为(20-x)分钟. 当0≤x<4时,y=-x2+8x+2(20-x)=-(x-3)2+49 ∵a=-1<0 ∴函数有最大值, 当x=3时,有最大值49; 当4≤x≤10时,y=16+2(20-x)=56-2x,y随x的增大而减小, 因此当x=4时,有最大值48. 综合以上,当x=3时,有最大值49,此时20-x=17. 即小迪用于回顾反思的时间为3分钟,用于解题的时间为17分钟时,学习的总收益量最大.
复制答案
考点分析:
相关试题推荐
(2007•泰安)如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,交AC于点E,过点D作DF⊥AC,垂足为F.
(1)求证:DF为⊙O的切线;
(2)若过A点且与BC平行的直线交BE的延长线于G点,连接CG.当△ABC是等边三角形时,求∠AGC的度数.

manfen5.com 满分网 查看答案
(2010•东台市模拟)已知,如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交BC于点D,过点C作CE⊥AD,垂足为E,CE的延长线交AB于点F,过点E作EG∥BC交AB于点G,AE•AD=16,manfen5.com 满分网
(1)求AC的长;
(2)求EG的长.

manfen5.com 满分网 查看答案
(2007•徐州)如图,一个可以自由转动的均匀转盘被分成了4等份,每份内均标有数字,小明和小亮商定了一个游戏,规则如下:
(1)连续转动转盘两次;
(2)将两次转盘停止后指针所指区域内的数字相加(当指针恰好停在分格线上时视为无效,重转);
(3)若数字之和为奇数,则小明赢;若数字之和为偶数,则小亮赢.
请用“列表”或“画树状图”的方法分析一下,这个游戏对双方公平吗?并说明理由.

manfen5.com 满分网 查看答案
(2010•东台市模拟)一游客从某塔顶A望地面C、D两点的俯角分别为45°、30°,若C、D与塔底B在一条直线上,CD=200米,求塔高AB.
查看答案
(2010•东台市模拟)已知一元二次方程(m-3)x2+2mx+m+1=0有两个不相等的实数根,并且这两个根又不互为相反数.
(1)求m的取值范围;
(2)当m在取值范围内取最小正偶数时,求方程的根.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.