某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种成本为20元/件的新型商品在第x天销售的相关信息如下表所示。
销售量p(件) |
P=50—x |
销售单价q(元/件) |
当1≤x≤20时, 当21≤x≤40时, |
(1)请计算第几天该商品的销售单价为35元/件?
(2)求该网店第x天获得的利润y关于x的函数关系式。
(3)这40天中该网店第几天获得的利润最大?最大利润是多少?
某厂为了解工人在单价时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1到8这八个整数,现提供统计图的部分信息如图,
请解答下列问题:
(1)根据统计图,求这50名工人加工出的合格品数的中位数。
(2)写出这50名工人加工出合格品数的众数的可能取值
(3)厂方认定,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接受技能再培训。已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数。
某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍,已知一副羽毛球拍比一副乒乓球拍费贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出部分能购买25副乒乓球拍。
(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用。
(2)若购买的两种球拍数一样,求x。
如图,防洪大堤的横断面是梯形ABCD,其中AD∥BC,坡角α=600,汛期来临前对其进行了加固,改造后的背水面坡角β=450,若原坡长AB=20m,求改造后的坡长AE(结果保留根号)
我们把正六边形的顶点及其对称中心称作如图(1)所示基本图的特征点,显然这样的基本图共有7个特征点。将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图(2)、图(3),……。
(1)观察以上图形并完成下表:
图形的名称 |
基本图的个数 |
特征点的个数 |
图(1) |
1 |
7 |
图(2) |
2 |
12 |
图(3) |
3 |
17 |
图(4) |
4 |
|
… |
… |
|
猜想:在图(n)中,特征点的个数为 (用n表示)
(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,2),则x1= ;图(2013)的对称中心的横坐标为 。
如图,抛物线与x轴交于点A(2,0),交y轴于点B(0,
).直线
过点A与y轴交于点C,与抛物线的另一个交点是D.
(1)求抛物线与直线
的解析式;
(2)设点P是直线AD上方的抛物线上一动点(不与点A、D重合),过点P作 y轴的平行线,交直线AD于点M,作DE⊥y轴于点E.探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;
(3)在(2)的条件下,作PN⊥AD于点N,设△PMN的周长为l,点P的横坐标为x,求l与x的函数关系式,并求出l的最大值.