如图,A,B是⊙O上的两个定点,P是⊙O上的动点(P不与A,B重合),我们称∠APB是⊙O上关于A、B的滑动角
(1)已知∠APB是⊙O上关于点A、B的滑动角,
①若AB是⊙O的直径,则∠APB= °;
②若⊙O的半径是1,AB=,求∠APB的度数;
(2)已知O2是⊙O1外一点,以O2为圆心作一个圆与⊙O1相交于A、B两点,∠APB是⊙O1上关于点A、B的滑动角,直线PA、PB分别交⊙O2于M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系,直接写出结论.
观察图形,解答问题:
(1)按下表已填写的形式填写表中的空格:
|
图① |
图② |
图③ |
三个角上三个数的积 |
1×(-1)×2=-2 |
(-3)×(-4)×(-5)=-60 |
|
三个角上三个数的和 |
1+(-1)+2=2 |
(-3)+(-4)+(-5)=-12 |
|
积与和的商 |
-2÷2=-1, |
|
|
请用你发现的规律求出图④中的数y和图⑤中的数x.
直线与双曲线
在第一象限内交于点P(a,b),且1.5≤a≤3,则k的取值范围是 .
若实数a,b满足a+b2=2,则2a2+10b2的最小值为 .
已知二次函数y=(x-3m)²+m-1(m为常数),当m取不同的值时,其图象构成一个“抛物线系”,该抛物线系中所有抛物线的顶点都在一条直线上,那么这条直线的解析式是 .
如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB= m.