设是奇函数,是偶函数,且其中.
(1)求和的表达式,并求函数的值域
(2)若关于的方程在区间内恰有两个不等实根,求常数的取值范围
已知集合,集合.
(1)当时,求;
(2)若求实数的取值范围.
提升城市道路通行能力,可为市民提供更多出行便利.我校某研究性学习小组对成都市一中心路段(限行速度为千米/小时)的拥堵情况进行调查统计,通过数据分析发现:该路段的车流速度(辆/千米)与车流密度(千米/小时)之间存在如下关系:如果车流密度不超过该路段畅通无阻(车流速度为限行速度);当车流密度在时,车流速度是车流密度的一次函数;车流密度一旦达到该路段交通完全瘫痪(车流速度为零).
(1)求关于的函数
(2)已知车流量(单位时间内通过的车辆数)等于车流密度与车流速度的乘积,求此路段车流量的最大值.
已知函数(其中)的部分图象如图.
(1)根据图象,求的解析式;
(2)求函数的单调递减区间.
在平行四边形中,为的中点,.
(1)设用表示和;
(2)求实数的值,使得与共线.
已知
(1)求的值;
(2)求的值.