已知,
,
,则
( )
A. B.
C.
D.
已知函数.
(1)求不等式的解集;
(2)若函数的图象最低点为
,正数
满足
,求
的取值范围.
在直角坐标系中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求和
的直角坐标方程;
(2)设为曲线
上的动点,求点
到直线
的距离的最小值.
已知函数.
(1)讨论的单调性;
(2)如果方程有两个不相等的解
,且
,证明:
.
已知椭圆的左、右焦点分别为
,
是椭圆上一动点(与左、右顶点不重合)已知
的内切圆半径的最大值为
,椭圆的离心率为
.
(1)求椭圆C的方程;
(2)过的直线
交椭圆
于
两点,过
作
轴的垂线交椭圆
与另一点
(
不与
重合).设
的外心为
,求证
为定值.
如图,圆柱的轴截面是边长为2的正方形,点
是圆弧
上的一动点(不与
重合),点
是圆弧
的中点,且点
在平面
的两侧.
(1)证明:平面平面
;
(2)设点在平面
上的射影为点
,点
分别是
和
的重心,当三棱锥
体积最大时,回答下列问题.
(ⅰ)证明:平面
;
(ⅱ)求平面与平面
所成二面角的正弦值.